{"title":"Utilisation of nanoparticle technology in cancer chemoresistance.","authors":"Duncan Ayers, Alessandro Nasti","doi":"10.1155/2012/265691","DOIUrl":null,"url":null,"abstract":"<p><p>The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting.</p>","PeriodicalId":15575,"journal":{"name":"Journal of drug delivery","volume":"2012 ","pages":"265691"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/265691","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/265691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/11/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting.