Fibroblast growth factor receptor 3 regulates microtubule formation and cell surface mechanical properties in the developing organ of Corti.

Bioarchitecture Pub Date : 2012-11-01 DOI:10.4161/bioa.22332
Katherine B Szarama, Ruben Stepanyan, Ronald S Petralia, Nuria Gavara, Gregory I Frolenkov, Matthew W Kelley, Richard S Chadwick
{"title":"Fibroblast growth factor receptor 3 regulates microtubule formation and cell surface mechanical properties in the developing organ of Corti.","authors":"Katherine B Szarama,&nbsp;Ruben Stepanyan,&nbsp;Ronald S Petralia,&nbsp;Nuria Gavara,&nbsp;Gregory I Frolenkov,&nbsp;Matthew W Kelley,&nbsp;Richard S Chadwick","doi":"10.4161/bioa.22332","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblast Growth Factor (Fgf) signaling is involved in the exquisite cellular patterning of the developing cochlea, and is necessary for proper hearing function. Our previous data indicate that Fgf signaling disrupts actin, which impacts the surface stiffness of sensory outer hair cells (OHCs) and non-sensory supporting pillar cells (PCs) in the organ of Corti. Here, we used Atomic Force Microscopy (AFM) to measure the impact of loss of function of Fgf-receptor 3, on cytoskeletal formation and cell surface mechanical properties. We find a 50% decrease in both OHC and PC surface stiffness, and a substantial disruption in microtubule formation in PCs. Moreover, we find no change in OHC electromotility of Fgfr3-deficient mice. To further understand the regulation by Fgf-signaling on microtubule formation, we treated wild-type cochlear explants with Fgf-receptor agonist Fgf2, or antagonist SU5402, and find that both treatments lead to a significant reduction in β-Tubulin isotypes I&II. To identify downstream transcriptional targets of Fgf-signaling, we used QPCR arrays to probe 84 cytoskeletal regulators. Of the 5 genes significantly upregulated following treatment, Clasp2, Mapre2 and Mark2 impact microtubule formation. We conclude that microtubule formation is a major downstream effector of Fgf-receptor 3, and suggest this pathway impacts the formation of fluid spaces in the organ of Corti.</p>","PeriodicalId":89329,"journal":{"name":"Bioarchitecture","volume":"2 6","pages":"214-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/bioa.22332","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/bioa.22332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Fibroblast Growth Factor (Fgf) signaling is involved in the exquisite cellular patterning of the developing cochlea, and is necessary for proper hearing function. Our previous data indicate that Fgf signaling disrupts actin, which impacts the surface stiffness of sensory outer hair cells (OHCs) and non-sensory supporting pillar cells (PCs) in the organ of Corti. Here, we used Atomic Force Microscopy (AFM) to measure the impact of loss of function of Fgf-receptor 3, on cytoskeletal formation and cell surface mechanical properties. We find a 50% decrease in both OHC and PC surface stiffness, and a substantial disruption in microtubule formation in PCs. Moreover, we find no change in OHC electromotility of Fgfr3-deficient mice. To further understand the regulation by Fgf-signaling on microtubule formation, we treated wild-type cochlear explants with Fgf-receptor agonist Fgf2, or antagonist SU5402, and find that both treatments lead to a significant reduction in β-Tubulin isotypes I&II. To identify downstream transcriptional targets of Fgf-signaling, we used QPCR arrays to probe 84 cytoskeletal regulators. Of the 5 genes significantly upregulated following treatment, Clasp2, Mapre2 and Mark2 impact microtubule formation. We conclude that microtubule formation is a major downstream effector of Fgf-receptor 3, and suggest this pathway impacts the formation of fluid spaces in the organ of Corti.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成纤维细胞生长因子受体3调节Corti发育器官的微管形成和细胞表面力学特性。
成纤维细胞生长因子(Fgf)信号参与了耳蜗发育过程中精细的细胞模式,是正常听力功能所必需的。我们之前的数据表明,Fgf信号会破坏肌动蛋白,从而影响Corti器官中感觉外毛细胞(OHCs)和非感觉支撑柱细胞(PCs)的表面刚度。在这里,我们使用原子力显微镜(AFM)来测量fgf受体3功能丧失对细胞骨架形成和细胞表面力学性能的影响。我们发现OHC和PC的表面刚度都降低了50%,PC的微管形成也受到了很大的破坏。此外,我们发现fgfr3缺陷小鼠的OHC电运动性没有变化。为了进一步了解fgf信号对微管形成的调控,我们用fgf受体激动剂Fgf2或拮抗剂SU5402处理野生型耳蜗外植体,发现两种处理均可显著降低β-微管蛋白同型i和ii。为了确定fgf信号的下游转录靶点,我们使用QPCR阵列探测了84个细胞骨架调节因子。在治疗后显著上调的5个基因中,Clasp2、Mapre2和Mark2影响微管的形成。我们得出结论,微管形成是fgf受体3的主要下游效应,并提示该途径影响Corti器官中流体空间的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Letter from the editors. The impact of tropomyosins on actin filament assembly is isoform specific. Geometric control and modeling of genome reprogramming. Post-polymerization crosstalk between the actin cytoskeleton and microtubule network. Where are the limits of the centrosome?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1