Annika Nordstrand, Marie Lundholm, Andreas Larsson, Ulf H Lerner, Anders Widmark, Pernilla Wikström
{"title":"Inhibition of the insulin-like growth factor-1 receptor enhances effects of simvastatin on prostate cancer cells in co-culture with bone.","authors":"Annika Nordstrand, Marie Lundholm, Andreas Larsson, Ulf H Lerner, Anders Widmark, Pernilla Wikström","doi":"10.1007/s12307-013-0129-z","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PC) bone metastases show weak responses to conventional therapies. Bone matrix is rich in growth factors, with insulin-like growth factor-1 (IGF-1) being one of the most abundant. IGF-1 acts as a survival factor for tumor cells and we speculate that bone-derived IGF-1 counteracts effects of therapies aimed to target bone metastases and, consequently, that therapeutic effects could be enhanced if given in combination with IGF-1 receptor (IGF-1R) inhibitors. Simvastatin inhibits the mevalonate pathway and has been found to induce apoptosis of PC cells. The aims of this study were to confirm stimulating effects of bone-derived IGF-1 on PC cells and to test if IGF-1R inhibition enhances growth inhibitory effects of simvastatin on PC cells in a bone microenvironment. The PC-3 and 22Rv1 tumor cell lines showed significantly induced cell growth when co-cultured with neonatal mouse calvarial bones. The tumor cell IGF-1R was activated by calvariae-conditioned media and neutralization of bone-derived IGF-1 abolished the calvarium-induced PC-3 cell growth. Treatment of PC-3 and 22Rv1 cells with simvastatin, or the IGF-1R inhibitor NVP-AEW541, reduced tumor cell numbers and viability, and induced apoptosis. Combined simvastatin and NVP-AEW541 treatment resulted in enhanced growth inhibitory effects compared to either drug given alone. Effects of simvastatin involved down-regulation of IGF-1R in PC-3 and of constitutively active androgen receptor variants in 22Rv1 cells. In conclusion, we suggest that IGF-1 inhibition may be a way to strengthen effects of apoptosis-inducing therapies on PC bone metastases; a possibility that needs to be further tested in pre-clinical models. </p>","PeriodicalId":9425,"journal":{"name":"Cancer Microenvironment","volume":"6 3","pages":"231-40"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/42/36/12307_2013_Article_129.PMC3855371.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12307-013-0129-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PC) bone metastases show weak responses to conventional therapies. Bone matrix is rich in growth factors, with insulin-like growth factor-1 (IGF-1) being one of the most abundant. IGF-1 acts as a survival factor for tumor cells and we speculate that bone-derived IGF-1 counteracts effects of therapies aimed to target bone metastases and, consequently, that therapeutic effects could be enhanced if given in combination with IGF-1 receptor (IGF-1R) inhibitors. Simvastatin inhibits the mevalonate pathway and has been found to induce apoptosis of PC cells. The aims of this study were to confirm stimulating effects of bone-derived IGF-1 on PC cells and to test if IGF-1R inhibition enhances growth inhibitory effects of simvastatin on PC cells in a bone microenvironment. The PC-3 and 22Rv1 tumor cell lines showed significantly induced cell growth when co-cultured with neonatal mouse calvarial bones. The tumor cell IGF-1R was activated by calvariae-conditioned media and neutralization of bone-derived IGF-1 abolished the calvarium-induced PC-3 cell growth. Treatment of PC-3 and 22Rv1 cells with simvastatin, or the IGF-1R inhibitor NVP-AEW541, reduced tumor cell numbers and viability, and induced apoptosis. Combined simvastatin and NVP-AEW541 treatment resulted in enhanced growth inhibitory effects compared to either drug given alone. Effects of simvastatin involved down-regulation of IGF-1R in PC-3 and of constitutively active androgen receptor variants in 22Rv1 cells. In conclusion, we suggest that IGF-1 inhibition may be a way to strengthen effects of apoptosis-inducing therapies on PC bone metastases; a possibility that needs to be further tested in pre-clinical models.
期刊介绍:
Cancer Microenvironment is the official journal of the International Cancer Microenvironment Society (ICMS). It publishes original studies in all aspects of basic, clinical and translational research devoted to the study of cancer microenvironment. It also features reports on clinical trials.
Coverage in Cancer Microenvironment includes: regulation of gene expression in the cancer microenvironment; innate and adaptive immunity in the cancer microenvironment, inflammation and cancer; tumor-associated stroma and extracellular matrix, tumor-endothelium interactions (angiogenesis, extravasation), cancer stem cells, the metastatic niche, targeting the tumor microenvironment: preclinical and clinical trials.