Notch signaling: genetics and structure.

Iva Greenwald, Rhett Kovall
{"title":"Notch signaling: genetics and structure.","authors":"Iva Greenwald,&nbsp;Rhett Kovall","doi":"10.1895/wormbook.1.10.2","DOIUrl":null,"url":null,"abstract":"<p><p>Receptors of the Notch family mediate cell-cell interactions during animal development, and aberrations in Notch signaling have been implicated in human disease. Studies in Caenorhabdits elegans have made essential contributions towards understanding the biological roles and molecular mechanism of this fundamental signaling system. A major development in the field since the original version of this chapter (LIN-12/Notch signaling in C. elegans) has been an explosion in information about the structural biology of Notch signaling; crystallographic determinations of structures, including structures of C. elegans components, have contributed much to the current understanding of molecular mechanism. Thus, here, we not only cover the genetics of Notch in C. elegans, focusing on conserved core components and modulators, we have also included structural information about these components, describing the key events occurring during ligand binding and transcriptional control of target genes. In addition to text, we include Tables listing core components and key modulators of the signaling pathway along with their orthologs in Drosophila and mammals, a Table listing validated target genes in various processes in C. elegans, and animated features to illustrate structural attributes.</p>","PeriodicalId":75344,"journal":{"name":"WormBook : the online review of C. elegans biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5402211/pdf/","citationCount":"100","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WormBook : the online review of C. elegans biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1895/wormbook.1.10.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 100

Abstract

Receptors of the Notch family mediate cell-cell interactions during animal development, and aberrations in Notch signaling have been implicated in human disease. Studies in Caenorhabdits elegans have made essential contributions towards understanding the biological roles and molecular mechanism of this fundamental signaling system. A major development in the field since the original version of this chapter (LIN-12/Notch signaling in C. elegans) has been an explosion in information about the structural biology of Notch signaling; crystallographic determinations of structures, including structures of C. elegans components, have contributed much to the current understanding of molecular mechanism. Thus, here, we not only cover the genetics of Notch in C. elegans, focusing on conserved core components and modulators, we have also included structural information about these components, describing the key events occurring during ligand binding and transcriptional control of target genes. In addition to text, we include Tables listing core components and key modulators of the signaling pathway along with their orthologs in Drosophila and mammals, a Table listing validated target genes in various processes in C. elegans, and animated features to illustrate structural attributes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺口信号:遗传和结构。
Notch家族的受体在动物发育过程中介导细胞间相互作用,Notch信号的畸变与人类疾病有关。对秀丽隐杆线虫的研究为理解这一基本信号系统的生物学作用和分子机制做出了重要贡献。自本章的最初版本(秀丽隐杆线虫中的LIN-12/Notch信号)以来,该领域的主要发展是关于Notch信号的结构生物学信息的爆炸式增长;结构的晶体学测定,包括秀丽隐杆线虫组分的结构,对目前对分子机制的理解做出了很大贡献。因此,在这里,我们不仅涵盖了秀丽隐杆线虫中Notch的遗传学,重点关注保守的核心成分和调节剂,我们还包括了这些成分的结构信息,描述了配体结合和靶基因转录控制过程中发生的关键事件。除了文本,我们还包括列出了核心成分和信号通路的关键调节剂及其在果蝇和哺乳动物中的同源物的表格,一个表格列出了秀丽隐杆线虫中各种过程中验证的靶基因,以及动画特征来说明结构属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. Small GTPases. Signaling in the innate immune response. Working with dauer larvae. Caenorhabditis nomenclature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1