Advantageous uses of mass spectrometry for the quantification of proteins.

International journal of proteomics Pub Date : 2013-01-01 Epub Date: 2013-01-08 DOI:10.1155/2013/219452
John E Hale
{"title":"Advantageous uses of mass spectrometry for the quantification of proteins.","authors":"John E Hale","doi":"10.1155/2013/219452","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative protein measurements by mass spectrometry have gained wide acceptance in research settings. However, clinical uptake of mass spectrometric protein assays has not followed suit. In part, this is due to the long-standing acceptance by regulatory agencies of immunological assays such as ELISA assays. In most cases, ELISAs provide highly accurate, sensitive, relatively inexpensive, and simple assays for many analytes. The barrier to acceptance of mass spectrometry in these situations will remain high. However, mass spectrometry provides solutions to certain protein measurements that are difficult, if not impossible, to accomplish by immunological methods. Cases where mass spectrometry can provide solutions to difficult assay development include distinguishing between very closely related protein species and monitoring biological and analytical variability due to sample handling and very high multiplexing capacity. This paper will highlight several examples where mass spectrometry has made certain protein measurements possible where immunological techniques have had a great difficulty.</p>","PeriodicalId":73474,"journal":{"name":"International journal of proteomics","volume":"2013 ","pages":"219452"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/219452","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/219452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Quantitative protein measurements by mass spectrometry have gained wide acceptance in research settings. However, clinical uptake of mass spectrometric protein assays has not followed suit. In part, this is due to the long-standing acceptance by regulatory agencies of immunological assays such as ELISA assays. In most cases, ELISAs provide highly accurate, sensitive, relatively inexpensive, and simple assays for many analytes. The barrier to acceptance of mass spectrometry in these situations will remain high. However, mass spectrometry provides solutions to certain protein measurements that are difficult, if not impossible, to accomplish by immunological methods. Cases where mass spectrometry can provide solutions to difficult assay development include distinguishing between very closely related protein species and monitoring biological and analytical variability due to sample handling and very high multiplexing capacity. This paper will highlight several examples where mass spectrometry has made certain protein measurements possible where immunological techniques have had a great difficulty.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质谱法用于蛋白质定量的有利用途。
质谱法定量测定蛋白质在研究中得到了广泛的接受。然而,质谱蛋白测定的临床应用并没有跟上。在某种程度上,这是由于监管机构长期接受免疫测定,如ELISA测定。在大多数情况下,elisa为许多分析物提供高度准确、敏感、相对便宜和简单的分析。在这些情况下,接受质谱法的障碍仍然很高。然而,质谱法为某些蛋白质测量提供了解决方案,这些蛋白质测量很难(如果不是不可能的话)通过免疫学方法完成。质谱法可以为困难的分析开发提供解决方案,包括区分非常密切相关的蛋白质物种和监测由于样品处理和非常高的多路复用能力而产生的生物和分析变异性。本文将重点介绍几个例子,其中质谱法使某些蛋白质测量成为可能,而免疫学技术有很大的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Miniaturized Digestion and Extraction of Surface Proteins from Candida albicans following Treatment with Histatin 5 for Mass Spectrometry Analysis Comparative Proteomic Analysis of Differential Proteins in Response to Aqueous Extract of Quercus infectoria Gall in Methicillin-Resistant Staphylococcus aureus Optimization of Urea Based Protein Extraction from Formalin-Fixed Paraffin-Embedded Tissue for Shotgun Proteomics Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae S-Nitrosylation Proteome Profile of Peripheral Blood Mononuclear Cells in Human Heart Failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1