Deparaffinization and lysis by hydrothermal pressure (pressure cooking) coupled with chaotropic salt column purification: a rapid and efficient method of DNA extraction from formalin-fixed paraffin-embedded tissue.
Haohao Zhong, Yan Liu, Monica Talmor, Bingquan Wu, Pei Hui
{"title":"Deparaffinization and lysis by hydrothermal pressure (pressure cooking) coupled with chaotropic salt column purification: a rapid and efficient method of DNA extraction from formalin-fixed paraffin-embedded tissue.","authors":"Haohao Zhong, Yan Liu, Monica Talmor, Bingquan Wu, Pei Hui","doi":"10.1097/PDM.0b013e318263f092","DOIUrl":null,"url":null,"abstract":"<p><p>We report a hydrothermal pressure method (pressure cooking) for simultaneous deparaffinization and lysis of formalin-fixed paraffin-embedded tissue followed by conventional chaotropic salt column purification to obtain high-quality DNA. Using this method, the release of DNA occurred within the first minute of treatment, reaching the maximum at 5 minutes. An optimal treatment window was between 5 and 30 minutes. The extracted DNA was of high quality as determined by the 260/280 absorbance ratios, and the quantity of DNA extracted was linear with the input tissue amount. In paired sample experiments (N=19), the quantity of DNA extracted by hydrothermal pressure treatment was comparable to that obtained through the conventional xylene deparaffinization and protease K digestion method. The integrity of the recovered DNA was also comparable, evidenced by polymerase chain reaction amplifications of variable-sized amplicons in tissue samples archived from 0.2 to 22 years (N=14). The high quality of DNA was further confirmed by polymerase chain reaction amplification and Sanger sequencing analysis of representative exons of the EGFR gene in human non-small cell lung cancer tissue samples. In summary, this novel method offers DNA release from formalin-fixed paraffin-embedded tissue with unprecedented simplicity, speed, biohazard safety, and cost-efficiency. Combined with chaotropic salt column purification, high-quality DNA can be prepared for downstream applications in <30 minutes.</p>","PeriodicalId":11235,"journal":{"name":"Diagnostic Molecular Pathology","volume":"22 1","pages":"52-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1097/PDM.0b013e318263f092","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic Molecular Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/PDM.0b013e318263f092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
We report a hydrothermal pressure method (pressure cooking) for simultaneous deparaffinization and lysis of formalin-fixed paraffin-embedded tissue followed by conventional chaotropic salt column purification to obtain high-quality DNA. Using this method, the release of DNA occurred within the first minute of treatment, reaching the maximum at 5 minutes. An optimal treatment window was between 5 and 30 minutes. The extracted DNA was of high quality as determined by the 260/280 absorbance ratios, and the quantity of DNA extracted was linear with the input tissue amount. In paired sample experiments (N=19), the quantity of DNA extracted by hydrothermal pressure treatment was comparable to that obtained through the conventional xylene deparaffinization and protease K digestion method. The integrity of the recovered DNA was also comparable, evidenced by polymerase chain reaction amplifications of variable-sized amplicons in tissue samples archived from 0.2 to 22 years (N=14). The high quality of DNA was further confirmed by polymerase chain reaction amplification and Sanger sequencing analysis of representative exons of the EGFR gene in human non-small cell lung cancer tissue samples. In summary, this novel method offers DNA release from formalin-fixed paraffin-embedded tissue with unprecedented simplicity, speed, biohazard safety, and cost-efficiency. Combined with chaotropic salt column purification, high-quality DNA can be prepared for downstream applications in <30 minutes.
期刊介绍:
Diagnostic Molecular Pathology focuses on providing clinical and academic pathologists with coverage of the latest molecular technologies, timely reviews of established techniques, and papers on the applications of these methods to all aspects of surgical pathology and laboratory medicine. It publishes original, peer-reviewed contributions on molecular probes for diagnosis, such as tumor suppressor genes, oncogenes, the polymerase chain reaction (PCR), and in situ hybridization. Articles demonstrate how these highly sensitive techniques can be applied for more accurate diagnosis.