Multi-Material Decomposition using Low-Current X-Ray and a Photon-Counting CZT Detector.

Sangtaek Kim, Andrew Hernandez, Fares Alhassen, Michael Pivovaroff, Hyo-Min Cho, Robert G Gould, Youngho Seo
{"title":"Multi-Material Decomposition using Low-Current X-Ray and a Photon-Counting CZT Detector.","authors":"Sangtaek Kim,&nbsp;Andrew Hernandez,&nbsp;Fares Alhassen,&nbsp;Michael Pivovaroff,&nbsp;Hyo-Min Cho,&nbsp;Robert G Gould,&nbsp;Youngho Seo","doi":"10.1109/nssmic.2011.6154705","DOIUrl":null,"url":null,"abstract":"<p><p>We developed and evaluated an x-ray photon-counting imaging system using an energy-resolving cadmium zinc telluride (CZT) detector coupled with application specific integrated circuit (ASIC) readouts. This x-ray imaging system can be used to identify different materials inside the object. The CZT detector has a large active area (5×5 array of 25 CZT modules, each with 16×16 pixels, cover a total area of 200 mm × 200 mm), high stopping efficiency for x-ray photons (~ 100 % at 60 keV and 5 mm thickness). We explored the performance of this system by applying different energy windows around the absorption edges of target materials, silver and indium, in order to distinguish one material from another. The photon-counting CZT-based x-ray imaging system was able to distinguish between the materials, demonstrating its capability as a radiation-spectroscopic decomposition system.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":" ","pages":"4735-4738"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/nssmic.2011.6154705","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nssmic.2011.6154705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We developed and evaluated an x-ray photon-counting imaging system using an energy-resolving cadmium zinc telluride (CZT) detector coupled with application specific integrated circuit (ASIC) readouts. This x-ray imaging system can be used to identify different materials inside the object. The CZT detector has a large active area (5×5 array of 25 CZT modules, each with 16×16 pixels, cover a total area of 200 mm × 200 mm), high stopping efficiency for x-ray photons (~ 100 % at 60 keV and 5 mm thickness). We explored the performance of this system by applying different energy windows around the absorption edges of target materials, silver and indium, in order to distinguish one material from another. The photon-counting CZT-based x-ray imaging system was able to distinguish between the materials, demonstrating its capability as a radiation-spectroscopic decomposition system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用低电流x射线和光子计数CZT探测器进行多材料分解。
我们开发并评估了一种x射线光子计数成像系统,该系统使用能量分辨碲化镉锌(CZT)探测器与专用集成电路(ASIC)读数相结合。这种x射线成像系统可用于识别物体内部的不同材料。该CZT探测器具有较大的有效面积(5×5由25个CZT模块组成的阵列,每个模块有16×16个像素,覆盖总面积为200mm × 200mm),对x射线光子的拦截效率高(在60kev和5mm厚度下达到100%)。我们通过在目标材料(银和铟)的吸收边缘周围应用不同的能量窗来探索该系统的性能,以区分不同的材料。基于光子计数cts的x射线成像系统能够区分材料,证明其作为辐射光谱分解系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1