{"title":"Inmembrane, a bioinformatic workflow for annotation of bacterial cell-surface proteomes.","authors":"Andrew J Perry, Bosco K Ho","doi":"10.1186/1751-0473-8-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The annotation of surface exposed bacterial membrane proteins is an important step in interpretation and validation of proteomic experiments. In particular, proteins detected by cell surface protease shaving experiments can indicate exposed regions of membrane proteins that may contain antigenic determinants or constitute vaccine targets in pathogenic bacteria.</p><p><strong>Results: </strong>Inmembrane is a tool to predict the membrane proteins with surface-exposed regions of polypeptide in sets of bacterial protein sequences. We have re-implemented a protocol for Gram-positive bacterial proteomes, and developed a new protocol for Gram-negative bacteria, which interface with multiple predictors of subcellular localization and membrane protein topology. Through the use of a modern scripting language, inmembrane provides an accessible code-base and extensible architecture that is amenable to modification for related sequence annotation tasks.</p><p><strong>Conclusions: </strong>Inmembrane easily integrates predictions from both local binaries and web-based queries to help gain an overview of likely surface exposed protein in a bacterial proteome. The program is hosted on the Github repository http://github.com/boscoh/inmembrane.</p>","PeriodicalId":35052,"journal":{"name":"Source Code for Biology and Medicine","volume":"8 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1751-0473-8-9","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Source Code for Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1751-0473-8-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 14
Abstract
Background: The annotation of surface exposed bacterial membrane proteins is an important step in interpretation and validation of proteomic experiments. In particular, proteins detected by cell surface protease shaving experiments can indicate exposed regions of membrane proteins that may contain antigenic determinants or constitute vaccine targets in pathogenic bacteria.
Results: Inmembrane is a tool to predict the membrane proteins with surface-exposed regions of polypeptide in sets of bacterial protein sequences. We have re-implemented a protocol for Gram-positive bacterial proteomes, and developed a new protocol for Gram-negative bacteria, which interface with multiple predictors of subcellular localization and membrane protein topology. Through the use of a modern scripting language, inmembrane provides an accessible code-base and extensible architecture that is amenable to modification for related sequence annotation tasks.
Conclusions: Inmembrane easily integrates predictions from both local binaries and web-based queries to help gain an overview of likely surface exposed protein in a bacterial proteome. The program is hosted on the Github repository http://github.com/boscoh/inmembrane.
期刊介绍:
Source Code for Biology and Medicine is a peer-reviewed open access, online journal that publishes articles on source code employed over a wide range of applications in biology and medicine. The journal"s aim is to publish source code for distribution and use in the public domain in order to advance biological and medical research. Through this dissemination, it may be possible to shorten the time required for solving certain computational problems for which there is limited source code availability or resources.