Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science

IF 32 1区 工程技术 Q1 ENERGY & FUELS Progress in Energy and Combustion Science Pub Date : 2023-05-01 DOI:10.1016/j.pecs.2023.101074
Adrian Chun Minh Loy , Sin Yong Teng , Bing Shen How , Xixia Zhang , Kin Wai Cheah , Valeria Butera , Wei Dong Leong , Bridgid Lai Fui Chin , Chung Loong Yiin , Martin J. Taylor , Georgios Kyriakou
{"title":"Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science","authors":"Adrian Chun Minh Loy ,&nbsp;Sin Yong Teng ,&nbsp;Bing Shen How ,&nbsp;Xixia Zhang ,&nbsp;Kin Wai Cheah ,&nbsp;Valeria Butera ,&nbsp;Wei Dong Leong ,&nbsp;Bridgid Lai Fui Chin ,&nbsp;Chung Loong Yiin ,&nbsp;Martin J. Taylor ,&nbsp;Georgios Kyriakou","doi":"10.1016/j.pecs.2023.101074","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of single atom sites as a frontier research area in catalysis has sparked extensive academic and industrial interest, especially for energy, environmental and chemicals production processes. Single atom catalysts (SACs) have shown remarkable performance in a variety of catalytic reactions, demonstrating high selectivity to the products of interest, long lifespan, high stability and more importantly high atomic metal utilization efficiency. In this review, we unveil in depth insights on development and achievements of SACs, including (a) Chronological progress on SACs development, (b) Recent advances in SACs synthesis, (c) Spatial and temporal SACs characterization techniques, (d) Application of SACs in different energy and chemical production, (e) Environmental and economic aspects of SACs, and (f) Current challenges, promising ideas and future prospects for SACs. On a whole, this review serves to enlighten scientists and engineers in developing fundamental catalytic understanding that can be applied into the future, both for academia or valorizing chemical processes.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"96 ","pages":"Article 101074"},"PeriodicalIF":32.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360128523000047","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 7

Abstract

The emergence of single atom sites as a frontier research area in catalysis has sparked extensive academic and industrial interest, especially for energy, environmental and chemicals production processes. Single atom catalysts (SACs) have shown remarkable performance in a variety of catalytic reactions, demonstrating high selectivity to the products of interest, long lifespan, high stability and more importantly high atomic metal utilization efficiency. In this review, we unveil in depth insights on development and achievements of SACs, including (a) Chronological progress on SACs development, (b) Recent advances in SACs synthesis, (c) Spatial and temporal SACs characterization techniques, (d) Application of SACs in different energy and chemical production, (e) Environmental and economic aspects of SACs, and (f) Current challenges, promising ideas and future prospects for SACs. On a whole, this review serves to enlighten scientists and engineers in developing fundamental catalytic understanding that can be applied into the future, both for academia or valorizing chemical processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于能源和可持续化工生产的单原子催化剂的阐明:合成、表征和前沿科学
单原子位的出现作为催化的前沿研究领域已经引起了广泛的学术和工业兴趣,特别是在能源,环境和化学品生产过程中。单原子催化剂(SACs)在多种催化反应中表现出优异的性能,对目标产物具有高选择性、长寿命、高稳定性,更重要的是具有较高的金属原子利用率。在这篇综述中,我们深入揭示了SACs的发展和成就,包括(a) SACs发展的时间进度,(b) SACs合成的最新进展,(c) SACs的时空表征技术,(d) SACs在不同能源和化工生产中的应用,(e) SACs的环境和经济方面,以及(f) SACs当前的挑战,有希望的想法和未来的前景。总的来说,这篇综述有助于启发科学家和工程师发展基本的催化理解,这些理解可以应用于未来,无论是在学术界还是在化学过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Energy and Combustion Science
Progress in Energy and Combustion Science 工程技术-工程:化工
CiteScore
59.30
自引率
0.70%
发文量
44
审稿时长
3 months
期刊介绍: Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science. PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.
期刊最新文献
Turbulent combustion modeling for internal combustion engine CFD: A review Modeling and optimization of anaerobic digestion technology: Current status and future outlook Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems Flame stabilization and emission characteristics of ammonia combustion in lab-scale gas turbine combustors: Recent progress and prospects A comprehensive review of liquid fuel droplet evaporation and combustion behavior with carbon-based nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1