Spatial discontinuous Galerkin spectral element method for a family of chromatography models in CADET

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-09-01 DOI:10.1016/j.compchemeng.2023.108340
Jan Michael Breuer , Samuel Leweke , Johannes Schmölder , Gregor Gassner , Eric von Lieres
{"title":"Spatial discontinuous Galerkin spectral element method for a family of chromatography models in CADET","authors":"Jan Michael Breuer ,&nbsp;Samuel Leweke ,&nbsp;Johannes Schmölder ,&nbsp;Gregor Gassner ,&nbsp;Eric von Lieres","doi":"10.1016/j.compchemeng.2023.108340","DOIUrl":null,"url":null,"abstract":"<div><p>Packed bed liquid chromatography<span><span> is widely applied in academia and industry. Model-based methods are increasingly utilized for process development and optimization, demanding multitudes of complex simulations. We derive spatial arbitrary order discontinuous Galerkin<span><span> (DG) discretizations for three commonly used </span>chromatography models, including the general rate model (GRM). The methods are integrated in the open source CADET software, making efficient implementations publicly available for the first time. The DG CADET code is validated and benchmarked against the original finite volume CADET code. We observe great performance advantages for DG, depending on the discrete problem size. For a four-component steric mass action GRM, we achieve a speed-up of an order of magnitude for an error range typical for </span></span>engineering applications. We explore the performance of a collocation Legendre–Gauß–Lobatto (LGL) quadrature DG method in comparison to an exact integration DG method. Our performance benchmarks indicate a slight advantage for collocation DG.</span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"177 ","pages":"Article 108340"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423002107","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Packed bed liquid chromatography is widely applied in academia and industry. Model-based methods are increasingly utilized for process development and optimization, demanding multitudes of complex simulations. We derive spatial arbitrary order discontinuous Galerkin (DG) discretizations for three commonly used chromatography models, including the general rate model (GRM). The methods are integrated in the open source CADET software, making efficient implementations publicly available for the first time. The DG CADET code is validated and benchmarked against the original finite volume CADET code. We observe great performance advantages for DG, depending on the discrete problem size. For a four-component steric mass action GRM, we achieve a speed-up of an order of magnitude for an error range typical for engineering applications. We explore the performance of a collocation Legendre–Gauß–Lobatto (LGL) quadrature DG method in comparison to an exact integration DG method. Our performance benchmarks indicate a slight advantage for collocation DG.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CADET中一系列色谱模型的空间不连续伽辽金谱元法
填充床液相色谱法在学术界和工业界都有广泛的应用。基于模型的方法越来越多地用于工艺开发和优化,需要大量复杂的模拟。我们推导了三种常用色谱模型的空间任意阶不连续伽辽金离散化,其中包括一般速率模型(GRM)。这些方法被集成到开源的CADET软件中,使有效的实现首次公开可用。DG CADET代码经过验证,并对原始有限体积CADET代码进行基准测试。我们观察到DG有很大的性能优势,这取决于离散问题的大小。对于四分量空间质量作用GRM,我们实现了一个数量级的加速,其误差范围是典型的工程应用。我们探讨了搭配legende - gau ß - lobatto (LGL)正交DG方法与精确积分DG方法的性能。我们的性能基准表明,搭配DG有一点优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Domain-enforced and operator-in-the-loop neural simulation platform for techno-enviro-economic performance enhancement of gas turbine system Data-driven source term estimation of hazardous gas leakages in complex chemical industrial parks Explainable Neural Network meets Graph Neural Network: Recent advances in process fault detection and diagnosis Harnessing machine learning for water energy food nexus sustainability: developing a surrogate to multi-objective optimization Cluster-based adaptive sampling methodology for systems modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1