Itziar de Aguirre, Alejandro Salvatierra, Albert Font, Jose Luis Mate, Maria Perez, Monica Botia, Miquel Taron, Rafael Rosell
{"title":"c-Met Mutational Analysis in the Sema and Juxtamembrane Domains in Small-Cell-Lung-Cancer.","authors":"Itziar de Aguirre, Alejandro Salvatierra, Albert Font, Jose Luis Mate, Maria Perez, Monica Botia, Miquel Taron, Rafael Rosell","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>c-Met mutations play a critical role in the development and progression of primary tumors and metastases. Activation of the HGF/SF-c-Met pathway determines a poor prognosis in non-small-cell and small-cell lung cancer (SCLC) patients. Missense mutations of c-Met have been identified in SCLC patients located in the juxtamembrane (JM) and in the Sema domain. To determine the role of the c-Met pathway in SCLC, we have investigated the presence of c-Met mutations in SCLC patients.</p><p><strong>Patients and methods: </strong>Forty-four tumor tissue samples from SCLC patients were obtained with bronchoscopy before beginning treatment. Analysis of c-Met mutations was performed in exon 2 and exon 14.</p><p><strong>Results: </strong>Of the 44 patients included in this study, 23 were classified as limited disease and were treated with sequential or concurrent chemotherapy and thoracic radiotherapy. Twenty-one patients with extensive disease received chemotherapy alone, the majority with cisplatin or carboplatin plus etoposide. The median survival was 14 months (95% CI: 9.4 to 18.5 months) and the 2- and 5-year survival rates were 24% and 15%, respectively. Previously identified missense mutations E168D, R988C and T1010I in c-Met were not found in our study. However, novel mutations were identified, including T995I in the juxtamembrane domain (T995I) and a mutation which does not change amino acid in codon 178 in the Sema domain.</p><p><strong>Conclusion: </strong>In SCLC patients, the presence of mutations in c-Met gene is a rare event. Other genetic alterations involved in the HGF/SF-c-Met pathway should be assessed to define the role of this signaling pathway in SCLC.</p>","PeriodicalId":88783,"journal":{"name":"Translational oncogenomics","volume":"1 ","pages":"11-8"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational oncogenomics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2006/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: c-Met mutations play a critical role in the development and progression of primary tumors and metastases. Activation of the HGF/SF-c-Met pathway determines a poor prognosis in non-small-cell and small-cell lung cancer (SCLC) patients. Missense mutations of c-Met have been identified in SCLC patients located in the juxtamembrane (JM) and in the Sema domain. To determine the role of the c-Met pathway in SCLC, we have investigated the presence of c-Met mutations in SCLC patients.
Patients and methods: Forty-four tumor tissue samples from SCLC patients were obtained with bronchoscopy before beginning treatment. Analysis of c-Met mutations was performed in exon 2 and exon 14.
Results: Of the 44 patients included in this study, 23 were classified as limited disease and were treated with sequential or concurrent chemotherapy and thoracic radiotherapy. Twenty-one patients with extensive disease received chemotherapy alone, the majority with cisplatin or carboplatin plus etoposide. The median survival was 14 months (95% CI: 9.4 to 18.5 months) and the 2- and 5-year survival rates were 24% and 15%, respectively. Previously identified missense mutations E168D, R988C and T1010I in c-Met were not found in our study. However, novel mutations were identified, including T995I in the juxtamembrane domain (T995I) and a mutation which does not change amino acid in codon 178 in the Sema domain.
Conclusion: In SCLC patients, the presence of mutations in c-Met gene is a rare event. Other genetic alterations involved in the HGF/SF-c-Met pathway should be assessed to define the role of this signaling pathway in SCLC.