Text Categorization of Heart, Lung, and Blood Studies in the Database of Genotypes and Phenotypes (dbGaP) Utilizing n-grams and Metadata Features.

Biomedical informatics insights Pub Date : 2013-07-22 Print Date: 2013-01-01 DOI:10.4137/BII.S11987
Mindy K Ross, Ko-Wei Lin, Karen Truong, Abhishek Kumar, Mike Conway
{"title":"Text Categorization of Heart, Lung, and Blood Studies in the Database of Genotypes and Phenotypes (dbGaP) Utilizing n-grams and Metadata Features.","authors":"Mindy K Ross,&nbsp;Ko-Wei Lin,&nbsp;Karen Truong,&nbsp;Abhishek Kumar,&nbsp;Mike Conway","doi":"10.4137/BII.S11987","DOIUrl":null,"url":null,"abstract":"<p><p>The database of Genotypes and Phenotypes (dbGaP) allows researchers to understand phenotypic contribution to genetic conditions, generate new hypotheses, confirm previous study results, and identify control populations. However, effective use of the database is hindered by suboptimal study retrieval. Our objective is to evaluate text classification techniques to improve study retrieval in the context of the dbGaP database. We utilized standard machine learning algorithms (naive Bayes, support vector machines, and the C4.5 decision tree) trained on dbGaP study text and incorporated n-gram features and study metadata to identify heart, lung, and blood studies. We used the χ(2) feature selection algorithm to identify features that contributed most to classification performance and experimented with dbGaP associated PubMed papers as a proxy for topicality. Classifier performance was favorable in comparison to keyword-based search results. It was determined that text categorization is a useful complement to document retrieval techniques in the dbGaP. </p>","PeriodicalId":88397,"journal":{"name":"Biomedical informatics insights","volume":"6 ","pages":"35-45"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BII.S11987","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical informatics insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BII.S11987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The database of Genotypes and Phenotypes (dbGaP) allows researchers to understand phenotypic contribution to genetic conditions, generate new hypotheses, confirm previous study results, and identify control populations. However, effective use of the database is hindered by suboptimal study retrieval. Our objective is to evaluate text classification techniques to improve study retrieval in the context of the dbGaP database. We utilized standard machine learning algorithms (naive Bayes, support vector machines, and the C4.5 decision tree) trained on dbGaP study text and incorporated n-gram features and study metadata to identify heart, lung, and blood studies. We used the χ(2) feature selection algorithm to identify features that contributed most to classification performance and experimented with dbGaP associated PubMed papers as a proxy for topicality. Classifier performance was favorable in comparison to keyword-based search results. It was determined that text categorization is a useful complement to document retrieval techniques in the dbGaP.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用n-图和元数据特征在基因型和表型数据库(dbGaP)中对心脏、肺和血液研究的文本分类。
基因型和表型数据库(dbGaP)使研究人员能够了解表型对遗传条件的贡献,产生新的假设,确认先前的研究结果,并确定对照人群。然而,数据库的有效利用受到次优研究检索的阻碍。我们的目标是评估文本分类技术,以改善dbGaP数据库上下文中的研究检索。我们利用dbGaP研究文本训练的标准机器学习算法(朴素贝叶斯、支持向量机和C4.5决策树),并结合n-gram特征和研究元数据来识别心脏、肺和血液研究。我们使用χ(2)特征选择算法来识别对分类性能贡献最大的特征,并使用dbGaP相关的PubMed论文作为主题性的代理进行实验。分类器的性能优于基于关键字的搜索结果。确定文本分类是dbGaP中文档检索技术的有用补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit A Genome Model to Explain Major Features of Neurodevelopmental Disorders in Newborns. Mathematical Model for Computer-Assisted Modification of Medication Dosing Rules. Applying Supervised Machine Learning to Identify Which Patient Characteristics Identify the Highest Rates of Mortality Post-Interhospital Transfer. Coalitional Game Theory Facilitates Identification of Non-Coding Variants Associated With Autism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1