Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

ISRN Organic Chemistry Pub Date : 2011-04-11 eCollection Date: 2011-01-01 DOI:10.5402/2011/759817
M I C F Costa, J R Steter, F L S Purgato, J R Romero
{"title":"Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).","authors":"M I C F Costa,&nbsp;J R Steter,&nbsp;F L S Purgato,&nbsp;J R Romero","doi":"10.5402/2011/759817","DOIUrl":null,"url":null,"abstract":"<p><p>Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. </p>","PeriodicalId":14730,"journal":{"name":"ISRN Organic Chemistry","volume":"2011 ","pages":"759817"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5402/2011/759817","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Organic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5402/2011/759817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚对烯丙基醚苯磺酸膜催化次亚磷酸钠还原贵金属盐。
采用阳极法在玻碳电极表面涂覆聚对烯丙基醚苯磺酸薄膜。通过H(+)与相应的盐离子交换,将镍、铂和钯离子引入膜中。这些离子用已知的化学还原剂次亚磷酸钠催化还原为相应的金属。用扫描电镜和能量色散x射线能谱分析证实了催化过程的发生。为了与我们实验室进行的另一种方法进行比较,我们使用相同的修饰电极研究了H(+)的电催化还原。提出了一种可能的催化机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis, Spectral Analysis, In Vitro Microbiological Evaluation, and Molecular Docking Studies of Some Novel 1-(1-Aryl-1H-tetrazol-5-yl)-2-(piperidin-1-yl)ethanone Derivatives. A facile stereoselective total synthesis of (R)-rugulactone. Asymmetric organocatalysis at the service of medicinal chemistry. Efficient electrochemical N-alkylation of N-boc-protected 4-aminopyridines: towards new biologically active compounds. Synthesis and biological activities of 4-aminoantipyrine derivatives derived from betti-type reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1