P Rajalakshmi, N Srinivasan, R V Krishnakumar, Ibrahim Abdul Razak, Mohd Mustaqim Rosli
{"title":"Supramolecular architectures of N-acetyl-L-proline monohydrate and N-benzyl-L-proline.","authors":"P Rajalakshmi, N Srinivasan, R V Krishnakumar, Ibrahim Abdul Razak, Mohd Mustaqim Rosli","doi":"10.1107/S010827011302581X","DOIUrl":null,"url":null,"abstract":"<p><p>The title compounds, N-acetyl-L-proline monohydrate, C7H11NO3·H2O, (I), and N-benzyl-L-proline, C12H15NO2, (II), crystallize in the monoclinic space group P21 with Z' = 1 and Z' = 2, respectively. The conformation of C(γ) with respect to the carboxylic acid group in (I) is C(γ)-exo or UP pucker, with the pyrrolidine ring twisted, while in (II), it is C(γ)-endo or DOWN, with the pyrrolidine ring assuming an envelope conformation. The crystal packing interactions in (I) are composed of two substructures, one characterized by an R6(6)(24) motif through O-H...O hydrogen bonds and the other by an R4(4)(23) ring through C-H...O interactions. In (II), the crystal packing interactions consist of N-H...O and C-H...O hydrogen bonds. Proline (Pro) exists in its neutral form in (I) and is zwitterionic in (II). This difference in the ionization states of Pro is manifested through the absence of N-H...O and presence of O-H...O interactions in (I), and the presence of N-H...O and absence of O-H...O hydrogen bonds in (II). While C-H...O interactions are present in both (I) and (II), the geometry of the synthons formed by them and their mode of participation in intermolecular interactions is different. Though the title compounds differ significantly in terms of modifications in the Pro skeleton, the differences in their supramolecular structures may also be viewed as a result of the molecular recognition facilitated by the presence of a solvent water molecule in (I) and the zwitterionic state of the amino acid in (II). </p>","PeriodicalId":7368,"journal":{"name":"Acta crystallographica. Section C, Crystal structure communications","volume":"69 Pt 11","pages":"1390-6"},"PeriodicalIF":0.8000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S010827011302581X","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section C, Crystal structure communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S010827011302581X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/10/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The title compounds, N-acetyl-L-proline monohydrate, C7H11NO3·H2O, (I), and N-benzyl-L-proline, C12H15NO2, (II), crystallize in the monoclinic space group P21 with Z' = 1 and Z' = 2, respectively. The conformation of C(γ) with respect to the carboxylic acid group in (I) is C(γ)-exo or UP pucker, with the pyrrolidine ring twisted, while in (II), it is C(γ)-endo or DOWN, with the pyrrolidine ring assuming an envelope conformation. The crystal packing interactions in (I) are composed of two substructures, one characterized by an R6(6)(24) motif through O-H...O hydrogen bonds and the other by an R4(4)(23) ring through C-H...O interactions. In (II), the crystal packing interactions consist of N-H...O and C-H...O hydrogen bonds. Proline (Pro) exists in its neutral form in (I) and is zwitterionic in (II). This difference in the ionization states of Pro is manifested through the absence of N-H...O and presence of O-H...O interactions in (I), and the presence of N-H...O and absence of O-H...O hydrogen bonds in (II). While C-H...O interactions are present in both (I) and (II), the geometry of the synthons formed by them and their mode of participation in intermolecular interactions is different. Though the title compounds differ significantly in terms of modifications in the Pro skeleton, the differences in their supramolecular structures may also be viewed as a result of the molecular recognition facilitated by the presence of a solvent water molecule in (I) and the zwitterionic state of the amino acid in (II).
期刊介绍:
Acta Crystallographica Section C: Structural Chemistry is continuing its transition to a journal that publishes exciting science with structural content, in particular, important results relating to the chemical sciences. Section C is the journal of choice for the rapid publication of articles that highlight interesting research facilitated by the determination, calculation or analysis of structures of any type, other than macromolecular structures. Articles that emphasize the science and the outcomes that were enabled by the study are particularly welcomed. Authors are encouraged to include mainstream science in their papers, thereby producing manuscripts that are substantial scientific well-rounded contributions that appeal to a broad community of readers and increase the profile of the authors.