SN algorithm: analysis of temporal clinical data for mining periodic patterns and impending augury.

Dipankar Sengupta, Pradeep K Naik
{"title":"SN algorithm: analysis of temporal clinical data for mining periodic patterns and impending augury.","authors":"Dipankar Sengupta,&nbsp;Pradeep K Naik","doi":"10.1186/2043-9113-3-24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>EHR (Electronic Health Record) system has led to development of specialized form of clinical databases which enable storage of information in temporal prospective. It has been a big challenge for mining this form of clinical data considering varied temporal points. This study proposes a conjoined solution to analyze the clinical parameters akin to a disease. We have used \"association rule mining algorithm\" to discover association rules among clinical parameters that can be augmented with the disease. Furthermore, we have proposed a new algorithm, SN algorithm, to map clinical parameters along with a disease state at various temporal points.</p><p><strong>Result: </strong>SN algorithm is based on Jacobian approach, which augurs the state of a disease 'Sn' at a given temporal point 'Tn' by mapping the derivatives with the temporal point 'T0', whose state of disease 'S0' is known. The predictive ability of the proposed algorithm is evaluated in a temporal clinical data set of brain tumor patients. We have obtained a very high prediction accuracy of ~97% for a brain tumor state 'Sn' for any temporal point 'Tn'.</p><p><strong>Conclusion: </strong>The results indicate that the methodology followed may be of good value to the diagnostic procedure, especially for analyzing temporal form of clinical data.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":" ","pages":"24"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-3-24","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-3-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Background: EHR (Electronic Health Record) system has led to development of specialized form of clinical databases which enable storage of information in temporal prospective. It has been a big challenge for mining this form of clinical data considering varied temporal points. This study proposes a conjoined solution to analyze the clinical parameters akin to a disease. We have used "association rule mining algorithm" to discover association rules among clinical parameters that can be augmented with the disease. Furthermore, we have proposed a new algorithm, SN algorithm, to map clinical parameters along with a disease state at various temporal points.

Result: SN algorithm is based on Jacobian approach, which augurs the state of a disease 'Sn' at a given temporal point 'Tn' by mapping the derivatives with the temporal point 'T0', whose state of disease 'S0' is known. The predictive ability of the proposed algorithm is evaluated in a temporal clinical data set of brain tumor patients. We have obtained a very high prediction accuracy of ~97% for a brain tumor state 'Sn' for any temporal point 'Tn'.

Conclusion: The results indicate that the methodology followed may be of good value to the diagnostic procedure, especially for analyzing temporal form of clinical data.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SN算法:分析临床时间数据,挖掘周期模式和即将发生的预兆。
背景:EHR(电子健康记录)系统导致了临床数据库的特殊形式的发展,使信息存储在时间的前瞻性。考虑到不同的时间点,挖掘这种形式的临床数据一直是一个很大的挑战。本研究提出了一种用于分析类似于疾病的临床参数的联合解决方案。我们使用“关联规则挖掘算法”来发现临床参数之间的关联规则,这些关联规则可以随疾病而增强。此外,我们提出了一种新的算法,即SN算法,用于绘制临床参数和疾病在不同时间点的状态。结果:SN算法基于雅可比方法,通过将导数映射到已知疾病状态的时间点T0,来预测疾病SN在给定时间点Tn处的状态。在脑肿瘤患者的时间临床数据集中评估了所提出算法的预测能力。我们已经获得了对任意时间点Tn的脑肿瘤状态Sn的非常高的预测精度~97%。结论:所采用的方法对诊断程序,特别是分析临床资料的时间形式具有良好的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical research informatics (CRI): overview over new tools and services First Clinical Research Informatics (CRI) Solutions Day: advanced IT support from EU projects for clinical trials Mobile eHealth solution (ePRO) EHR4CR local workbench TRANSFoRm Data quality tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1