Volume-specific parameter optimization of 3D local phase features for improved extraction of bone surfaces in ultrasound.

Ilker Hacihaliloglu, Pierre Guy, Antony J Hodgson, Rafeef Abugharbieh
{"title":"Volume-specific parameter optimization of 3D local phase features for improved extraction of bone surfaces in ultrasound.","authors":"Ilker Hacihaliloglu,&nbsp;Pierre Guy,&nbsp;Antony J Hodgson,&nbsp;Rafeef Abugharbieh","doi":"10.1002/rcs.1552","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate localization of bone surfaces remains a challenge hampering adoption of ultrasound guidance in computer-assisted orthopaedic surgery. Local phase image features have recently been proven efficacious for segmenting bone surfaces from ultrasound images, but the quality of the processing depends on numerous filter parameters that are currently set through a trial and error process that is tedious, unintuitive and subject to large inter-user variability.</p><p><strong>Methods: </strong>A method is presented for automatically selecting parameters of Log-Gabor filters used to extract bone surfaces from 3D ultrasound volumes that is based on properties estimated directly from the specific image.</p><p><strong>Results: </strong>A 15% and 69% average improvement in bone surface localization accuracy on phantom and clinical data, respectively, is demonstrated compared with empirically-set parameters.</p><p><strong>Conclusions: </strong>These findings imply that Log-Gabor filter parameter optimization is necessary for accurate extraction of bone surfaces from ultrasound data.</p>","PeriodicalId":75029,"journal":{"name":"The international journal of medical robotics + computer assisted surgery : MRCAS","volume":"10 4","pages":"461-73"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/rcs.1552","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of medical robotics + computer assisted surgery : MRCAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rcs.1552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Background: Accurate localization of bone surfaces remains a challenge hampering adoption of ultrasound guidance in computer-assisted orthopaedic surgery. Local phase image features have recently been proven efficacious for segmenting bone surfaces from ultrasound images, but the quality of the processing depends on numerous filter parameters that are currently set through a trial and error process that is tedious, unintuitive and subject to large inter-user variability.

Methods: A method is presented for automatically selecting parameters of Log-Gabor filters used to extract bone surfaces from 3D ultrasound volumes that is based on properties estimated directly from the specific image.

Results: A 15% and 69% average improvement in bone surface localization accuracy on phantom and clinical data, respectively, is demonstrated compared with empirically-set parameters.

Conclusions: These findings imply that Log-Gabor filter parameter optimization is necessary for accurate extraction of bone surfaces from ultrasound data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维局部相位特征的体特异性参数优化,以改进超声骨表面的提取。
背景:骨表面的准确定位仍然是一个挑战,阻碍了超声引导在计算机辅助骨科手术中的应用。局部相位图像特征最近被证明对从超声图像中分割骨表面是有效的,但是处理的质量取决于许多滤波器参数,这些参数目前是通过反复试验的过程设置的,这是繁琐的,不直观的,并且受到用户之间很大的差异。方法:提出了一种基于直接从特定图像估计的属性,自动选择用于从3D超声体积中提取骨表面的Log-Gabor滤波器参数的方法。结果:与经验设置的参数相比,根据幻影和临床数据,骨表面定位精度分别平均提高15%和69%。结论:这些发现表明Log-Gabor滤波器参数优化对于从超声数据中准确提取骨表面是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
期刊最新文献
Path Planning for Multiple Targets for Cannula Flexible Needle With Variable-Curvature Trajectories. Comparison of robotic and open central pancreatectomy. Full coverage path planning algorithm for MRgFUS therapy A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery A Novel Solution of Using Mixed Reality in Bowel and Oral and Maxillofacial Surgical Telepresence: 3D Mean Value Cloning algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1