{"title":"Optimisation of miRNA-mRNA relationship prediction using biological features.","authors":"Jasjit K Banwait, Hesham H Ali, Dhundy R Bastola","doi":"10.1504/IJCBDD.2014.058587","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs are small (approx. 22nt) non-coding RNAs that regulate the expression of genes by either degrading messenger-RNA (mRNA) that has already been transcribed or by repressing the translation of mRNA, thus inhibiting protein production. This mechanism of gene regulation by binding of the miRNA to 3-prime-untranslated region of target mRNAs has been recently discovered. This sequence-specific post-transcriptional gene regulation process affects large set of genes involved in number of biological pathways. Mapping of 7nt long miRNA seed sequence to the target gene has been a standard way of predicting miRNA targets. In this study, we develop a framework to enrich the human miRNA-mRNA relationship based on genomic and structural information. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 1","pages":"45-60"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.058587","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.058587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 4
Abstract
MicroRNAs are small (approx. 22nt) non-coding RNAs that regulate the expression of genes by either degrading messenger-RNA (mRNA) that has already been transcribed or by repressing the translation of mRNA, thus inhibiting protein production. This mechanism of gene regulation by binding of the miRNA to 3-prime-untranslated region of target mRNAs has been recently discovered. This sequence-specific post-transcriptional gene regulation process affects large set of genes involved in number of biological pathways. Mapping of 7nt long miRNA seed sequence to the target gene has been a standard way of predicting miRNA targets. In this study, we develop a framework to enrich the human miRNA-mRNA relationship based on genomic and structural information.