{"title":"Integrating edge detection and fuzzy connectedness for automated segmentation of anatomical branching structures.","authors":"Angeliki Skoura, Tatyana Nuzhnaya, Vasileios Megalooikonomou","doi":"10.1504/IJBRA.2014.058780","DOIUrl":null,"url":null,"abstract":"<p><p>Image segmentation algorithms are critical components of medical image analysis systems. This paper presents a novel and fully automated methodology for segmenting anatomical branching structures in medical images. It is a hybrid approach which integrates the Canny edge detection to obtain a preliminary boundary of the structure and the fuzzy connectedness algorithm to handle efficiently the discontinuities of the returned edge map. To ensure efficient localisation of weak branches, the fuzzy connectedness framework is applied in a sliding window mode and using a voting scheme the optimal connection point is estimated. Finally, the image regions are labelled as tissue or background using a locally adaptive thresholding technique. The proposed methodology is applied and evaluated in segmenting ductal trees visualised in clinical X-ray galactograms and vasculature visualised in angiograms. The experimental results demonstrate the effectiveness of the proposed approach achieving high scores of detection rate and accuracy among state-of-the-art segmentation techniques. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.058780","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.058780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 3
Abstract
Image segmentation algorithms are critical components of medical image analysis systems. This paper presents a novel and fully automated methodology for segmenting anatomical branching structures in medical images. It is a hybrid approach which integrates the Canny edge detection to obtain a preliminary boundary of the structure and the fuzzy connectedness algorithm to handle efficiently the discontinuities of the returned edge map. To ensure efficient localisation of weak branches, the fuzzy connectedness framework is applied in a sliding window mode and using a voting scheme the optimal connection point is estimated. Finally, the image regions are labelled as tissue or background using a locally adaptive thresholding technique. The proposed methodology is applied and evaluated in segmenting ductal trees visualised in clinical X-ray galactograms and vasculature visualised in angiograms. The experimental results demonstrate the effectiveness of the proposed approach achieving high scores of detection rate and accuracy among state-of-the-art segmentation techniques.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.