Adaptive Parametric Spectral Estimation with Kalman Smoothing for Online Early Seizure Detection.

Yun S Park, Leigh R Hochberg, Emad N Eskandar, Sydney S Cash, Wilson Truccolo
{"title":"Adaptive Parametric Spectral Estimation with Kalman Smoothing for Online Early Seizure Detection.","authors":"Yun S Park,&nbsp;Leigh R Hochberg,&nbsp;Emad N Eskandar,&nbsp;Sydney S Cash,&nbsp;Wilson Truccolo","doi":"10.1109/NER.2013.6696207","DOIUrl":null,"url":null,"abstract":"<p><p>Tracking spectral changes in neural signals, such as local field potentials (LFPs) and scalp or intracranial electroencephalograms (EEG, iEEG), is an important problem in early detection and prediction of seizures. Most approaches have focused on either parametric or nonparametric spectral estimation methods based on moving time windows. Here, we explore an adaptive (time-varying) parametric ARMA approach for tracking spectral changes in neural signals based on the fixed-interval Kalman smoother. We apply the method to seizure detection based on spectral features of intracortical LFPs recorded from a person with pharmacologically intractable focal epilepsy. We also devise and test an approach for real-time tracking of spectra based on the adaptive parametric method with the fixed-interval Kalman smoother. The order of ARMA models is determined via the AIC computed in moving time windows. We quantitatively demonstrate the advantages of using the adaptive parametric estimation method in seizure detection over nonparametric alternatives based exclusively on moving time windows. Overall, the adaptive parametric approach significantly improves the statistical separability of interictal and ictal epochs.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"1410-1413"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NER.2013.6696207","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6696207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tracking spectral changes in neural signals, such as local field potentials (LFPs) and scalp or intracranial electroencephalograms (EEG, iEEG), is an important problem in early detection and prediction of seizures. Most approaches have focused on either parametric or nonparametric spectral estimation methods based on moving time windows. Here, we explore an adaptive (time-varying) parametric ARMA approach for tracking spectral changes in neural signals based on the fixed-interval Kalman smoother. We apply the method to seizure detection based on spectral features of intracortical LFPs recorded from a person with pharmacologically intractable focal epilepsy. We also devise and test an approach for real-time tracking of spectra based on the adaptive parametric method with the fixed-interval Kalman smoother. The order of ARMA models is determined via the AIC computed in moving time windows. We quantitatively demonstrate the advantages of using the adaptive parametric estimation method in seizure detection over nonparametric alternatives based exclusively on moving time windows. Overall, the adaptive parametric approach significantly improves the statistical separability of interictal and ictal epochs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼平滑的自适应参数谱估计在线早期癫痫检测。
追踪局部场电位(LFPs)、头皮或颅内脑电图(EEG, iEEG)等神经信号的频谱变化是早期发现和预测癫痫发作的重要问题。大多数方法都集中在基于移动时间窗的参数或非参数谱估计方法上。在这里,我们探索了一种基于固定间隔卡尔曼平滑的自适应(时变)参数ARMA方法来跟踪神经信号的频谱变化。我们将该方法应用于癫痫发作检测,基于从药理学上难治性局灶性癫痫患者记录的皮质内lfp的频谱特征。我们还设计并测试了一种基于固定间隔卡尔曼平滑的自适应参数法的光谱实时跟踪方法。ARMA模型的阶数是通过移动时间窗计算得到的AIC来确定的。我们定量地证明了使用自适应参数估计方法在癫痫发作检测中优于仅基于移动时间窗的非参数替代方法。总体而言,自适应参数方法显著提高了间隔期和临界期的统计可分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regulation of arousal and performance of a healthy non-human primate using closed-loop central thalamic deep brain stimulation. The Design of Brainstem Interfaces: Characterisation of Physiological Artefacts and Implications for Closed-loop Algorithms. Medial Tractography Analysis (MeTA) for White Matter Population Analyses Across Datasets Inferring Pyramidal Neuron Morphology using EAP Data. Reverse engineering information processing in lateral amygdala during auditory tones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1