An Intimate Relationship between ROS and Insulin Signalling: Implications for Antioxidant Treatment of Fatty Liver Disease.

Q3 Biochemistry, Genetics and Molecular Biology International Journal of Cell Biology Pub Date : 2014-01-01 Epub Date: 2014-02-12 DOI:10.1155/2014/519153
Aurèle Besse-Patin, Jennifer L Estall
{"title":"An Intimate Relationship between ROS and Insulin Signalling: Implications for Antioxidant Treatment of Fatty Liver Disease.","authors":"Aurèle Besse-Patin,&nbsp;Jennifer L Estall","doi":"10.1155/2014/519153","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress damages multiple cellular components including DNA, lipids, and proteins and has been linked to pathological alterations in nonalcoholic fatty liver disease (NAFLD). Reactive oxygen species (ROS) emission, resulting from nutrient overload and mitochondrial dysfunction, is thought to be a principal mediator in NAFLD progression, particularly toward the development of hepatic insulin resistance. In the context of insulin signalling, ROS has a dual role, as both a facilitator and inhibitor of the insulin signalling cascade. ROS mediate these effects through redox modifications of cysteine residues affecting phosphatase enzyme activity, stress-sensitive kinases, and metabolic sensors. This review highlights the intricate relationship between redox-sensitive proteins and insulin signalling in the context of fatty liver disease, and to a larger extent, the importance of reactive oxygen species as primary signalling molecules in metabolically active cells. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2014 ","pages":"519153"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/519153","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/519153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 47

Abstract

Oxidative stress damages multiple cellular components including DNA, lipids, and proteins and has been linked to pathological alterations in nonalcoholic fatty liver disease (NAFLD). Reactive oxygen species (ROS) emission, resulting from nutrient overload and mitochondrial dysfunction, is thought to be a principal mediator in NAFLD progression, particularly toward the development of hepatic insulin resistance. In the context of insulin signalling, ROS has a dual role, as both a facilitator and inhibitor of the insulin signalling cascade. ROS mediate these effects through redox modifications of cysteine residues affecting phosphatase enzyme activity, stress-sensitive kinases, and metabolic sensors. This review highlights the intricate relationship between redox-sensitive proteins and insulin signalling in the context of fatty liver disease, and to a larger extent, the importance of reactive oxygen species as primary signalling molecules in metabolically active cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ROS与胰岛素信号的密切关系:对脂肪肝抗氧化治疗的启示
氧化应激损害多种细胞成分,包括DNA、脂质和蛋白质,并与非酒精性脂肪性肝病(NAFLD)的病理改变有关。由营养超载和线粒体功能障碍引起的活性氧(ROS)释放被认为是NAFLD进展的主要介质,特别是对肝脏胰岛素抵抗的发展。在胰岛素信号传导的背景下,ROS具有双重作用,既是胰岛素信号级联的促进者,也是抑制剂。ROS通过对影响磷酸酶活性、应激敏感激酶和代谢传感器的半胱氨酸残基的氧化还原修饰介导这些作用。这篇综述强调了脂肪性肝病中氧化还原敏感蛋白和胰岛素信号之间的复杂关系,并且在更大程度上强调了活性氧作为代谢活跃细胞中主要信号分子的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Cell Biology
International Journal of Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
3.30
自引率
0.00%
发文量
4
审稿时长
20 weeks
期刊最新文献
A Comparative Study on the Effects of Mesenchymal Stem Cells and Their Conditioned Medium on Caco-2 Cells as an In Vitro Model for Inflammatory Bowel Disease. The Effect of Exposure to Mobile Phones on Electrical Cardiac Measurements: A Multivariate Analysis and a Variable Selection Algorithm to Detect the Relationship With Mean Changes. The Role of Bcl-2 Family Proteins and Sorafenib Resistance in Hepatocellular Carcinoma. Mitotic Kinases Aurora-A, Plk1, and Cdk1 Interact with Elk-1 Transcription Factor through the N-Terminal Domain. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1