Megha Garg, Lakshmi R Perumalsamy, G V Shivashankar, Apurva Sarin
{"title":"The linker histone h1.2 is an intermediate in the apoptotic response to cytokine deprivation in T-effectors.","authors":"Megha Garg, Lakshmi R Perumalsamy, G V Shivashankar, Apurva Sarin","doi":"10.1155/2014/674753","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue homeostasis is a dynamic process involving proliferation and the removal of redundant or damaged cells. This is exemplified in the coordinated deletion-triggered by limiting trophic factors/cytokines in the extracellular milieu-of differentiated T cells overproduced during the mammalian immune response. However, mechanisms by which extracellular cues are perceived and transduced as apoptotic triggers remain incompletely understood. T-effectors are dependent on cytokines for survival and undergo apoptosis following cytokine withdrawal. Here we report that leptomycin B (LMB), an inhibitor of nuclear export machinery, protected T-effectors from apoptosis implicating a nuclear intermediate in the apoptotic pathway. Evidence is presented that the linker histone H1.2 localizes to the cytoplasm, by a mechanism sensitive to regulation by LMB, to activate apoptotic signaling culminating in nuclear and mitochondrial damage in T-effectors in response to cytokine deprivation. H1.2 is detected in a complex with the proapoptotic mitochondrial resident Bak and its subcellular localization regulated by Jun-N-terminal kinase (JNK), an intermediate in the apoptotic cascade in T-effectors. These data suggest that metabolic stressors may impinge on H1.2 dynamics favoring its activity at the mitochondrion, thereby functioning as a molecular switch for T-effector apoptosis. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2014 ","pages":"674753"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/674753","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/674753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 11
Abstract
Tissue homeostasis is a dynamic process involving proliferation and the removal of redundant or damaged cells. This is exemplified in the coordinated deletion-triggered by limiting trophic factors/cytokines in the extracellular milieu-of differentiated T cells overproduced during the mammalian immune response. However, mechanisms by which extracellular cues are perceived and transduced as apoptotic triggers remain incompletely understood. T-effectors are dependent on cytokines for survival and undergo apoptosis following cytokine withdrawal. Here we report that leptomycin B (LMB), an inhibitor of nuclear export machinery, protected T-effectors from apoptosis implicating a nuclear intermediate in the apoptotic pathway. Evidence is presented that the linker histone H1.2 localizes to the cytoplasm, by a mechanism sensitive to regulation by LMB, to activate apoptotic signaling culminating in nuclear and mitochondrial damage in T-effectors in response to cytokine deprivation. H1.2 is detected in a complex with the proapoptotic mitochondrial resident Bak and its subcellular localization regulated by Jun-N-terminal kinase (JNK), an intermediate in the apoptotic cascade in T-effectors. These data suggest that metabolic stressors may impinge on H1.2 dynamics favoring its activity at the mitochondrion, thereby functioning as a molecular switch for T-effector apoptosis.
组织稳态是一个动态过程,包括增殖和多余或受损细胞的移除。在哺乳动物免疫应答过程中,分化的T细胞过量产生的细胞外环境中限制营养因子/细胞因子引发的协同缺失就是例证。然而,细胞外信号被感知和转导为凋亡触发的机制仍然不完全清楚。t效应物依赖细胞因子生存,并在细胞因子停用后发生细胞凋亡。在这里,我们报道了leptomycin B (LMB),一种核输出机制的抑制剂,保护t效应物免于凋亡,这暗示了凋亡途径中的核中间体。有证据表明,连接蛋白H1.2通过一种对LMB调控敏感的机制定位于细胞质,激活凋亡信号,最终导致t效应物在细胞因子剥夺时的核和线粒体损伤。H1.2存在于与促凋亡线粒体驻留蛋白Bak的复合体中,其亚细胞定位受jun - n-末端激酶(JNK)调控,JNK是t效应物中凋亡级联的中间物。这些数据表明,代谢应激源可能影响H1.2动力学,有利于其在线粒体中的活性,从而作为t效应细胞凋亡的分子开关。