Improved contrast and spatial resolution with Single Photon Counting (SPC) for an area x-ray imager, the newly developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector.

Amit Jain, Andrew Kuhls-Gilcrist, Daniel R Bednarek, Stephen Rudin
{"title":"Improved contrast and spatial resolution with Single Photon Counting (SPC) for an area x-ray imager, the newly developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector.","authors":"Amit Jain,&nbsp;Andrew Kuhls-Gilcrist,&nbsp;Daniel R Bednarek,&nbsp;Stephen Rudin","doi":"10.1109/NSSMIC.2009.5401587","DOIUrl":null,"url":null,"abstract":"<p><p>Although in radiological imaging, the prevailing mode of acquisition is the integration of the energy deposited by all x-rays absorbed in the imaging detector, much improvement in image spatial and contrast resolution could be achieved if each individual x-ray photon were detected and counted separately. In this work we compare the conventional energy integration (EI) mode with the new single photon counting (SPC) mode for a recently developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector, which is uniquely capable of both modes of operation. The MAF has 1024×1024 pixels of 35 microns effective size and is capable of real-time imaging at 30 fps. The large variable gain of its light image intensifier (LII) provides quantum limited operation with essentially no additive instrumentation noise and enables the MAF to operate in both EI and the very sensitive low-exposure SPC modes. We used high LII gain with very low exposure (<1 x-ray photon/pixel) per frame for SPC mode and higher exposure per frame with lower gain for EI mode. Multiple signal-thresholded frames were summed in SPC mode to provide an integrated frame with the same total exposure as EI mode. A heavily K-edge filtered x-ray beam (average energy of 31 keV) was used to provide a nearly monochromatic spectrum. The MTF measured using a standard slit method showed a dramatic improvement for the SPC mode over the EI mode at all frequencies. Images of a line pair phantom also showed improved spatial resolution with 12 lp/mm visible in SPC mode compared to only 8 lp/mm in EI mode. In SPC mode, images of human distal and middle phalanges showed the trabecular structures of the bone with far better contrast and detail. These improvements with the SPC mode should be advantageous for clinical applications where high resolution and/or high contrast are essential such as in mammography and extremity imaging as well as for dual modality applications, which combine nuclear medicine and x-ray imaging using a single detector.</p>","PeriodicalId":73298,"journal":{"name":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","volume":"2009 ","pages":"3012-3016"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NSSMIC.2009.5401587","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium conference record. Nuclear Science Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2009.5401587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Although in radiological imaging, the prevailing mode of acquisition is the integration of the energy deposited by all x-rays absorbed in the imaging detector, much improvement in image spatial and contrast resolution could be achieved if each individual x-ray photon were detected and counted separately. In this work we compare the conventional energy integration (EI) mode with the new single photon counting (SPC) mode for a recently developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector, which is uniquely capable of both modes of operation. The MAF has 1024×1024 pixels of 35 microns effective size and is capable of real-time imaging at 30 fps. The large variable gain of its light image intensifier (LII) provides quantum limited operation with essentially no additive instrumentation noise and enables the MAF to operate in both EI and the very sensitive low-exposure SPC modes. We used high LII gain with very low exposure (<1 x-ray photon/pixel) per frame for SPC mode and higher exposure per frame with lower gain for EI mode. Multiple signal-thresholded frames were summed in SPC mode to provide an integrated frame with the same total exposure as EI mode. A heavily K-edge filtered x-ray beam (average energy of 31 keV) was used to provide a nearly monochromatic spectrum. The MTF measured using a standard slit method showed a dramatic improvement for the SPC mode over the EI mode at all frequencies. Images of a line pair phantom also showed improved spatial resolution with 12 lp/mm visible in SPC mode compared to only 8 lp/mm in EI mode. In SPC mode, images of human distal and middle phalanges showed the trabecular structures of the bone with far better contrast and detail. These improvements with the SPC mode should be advantageous for clinical applications where high resolution and/or high contrast are essential such as in mammography and extremity imaging as well as for dual modality applications, which combine nuclear medicine and x-ray imaging using a single detector.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高对比度和空间分辨率与单光子计数(SPC)的区域x射线成像仪,新开发的高分辨率微血管造影荧光(MAF)探测器。
虽然在放射成像中,主要的采集模式是将成像探测器吸收的所有x射线沉积的能量整合在一起,但如果单独检测和计数每个x射线光子,则可以大大提高图像空间和对比度分辨率。在这项工作中,我们比较了传统的能量集成(EI)模式和新的单光子计数(SPC)模式,用于最近开发的高分辨率微血管造影荧光(MAF)检测器,该检测器具有独特的两种操作模式。MAF具有有效尺寸为35微米的1024×1024像素,能够以每秒30帧的速度实时成像。其光图像增强器(LII)的大可变增益提供了量子有限的操作,基本上没有附加的仪器噪声,使MAF能够在EI和非常敏感的低曝光SPC模式下运行。我们使用了高LII增益和非常低的曝光(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ablation Study of Diffusion Model with Transformer Backbone for Low-count PET Denoising. Point-supervised Brain Tumor Segmentation with Box-prompted Medical Segment Anything Model. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. Calibration Methodology of an Edgeless PET System Prototype. Tensor Tomography of Dark Field Scatter using X-ray Interferometry with Bi-prisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1