In silico analysis of plant and animal transposable elements.

Mo-Li Huang, Songsak Wattanachaisaereekul, Yu-Jun Han, Wanwipa Vongsangnak
{"title":"In silico analysis of plant and animal transposable elements.","authors":"Mo-Li Huang,&nbsp;Songsak Wattanachaisaereekul,&nbsp;Yu-Jun Han,&nbsp;Wanwipa Vongsangnak","doi":"10.1504/IJBRA.2014.060763","DOIUrl":null,"url":null,"abstract":"<p><p>Transposable Elements (TEs) play important roles in the evolution of eukaryotic organisms. TEs widely distribute depending on their properties present in the genome. This study elucidated the molecular characteristics of TEs in land plants and animals using bioinformatics and in silico mutational approach. We discovered that the GC-rich class I TEs is the predominant class of TEs in animal, but the AT-rich class II TEs is prevalent in plants. The GC-rich class I TEs appears to be evolved within the animals. On contrary, the preserved in AT-rich in class II TEs is believed to be contributed in host defence systems. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.060763","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.060763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Transposable Elements (TEs) play important roles in the evolution of eukaryotic organisms. TEs widely distribute depending on their properties present in the genome. This study elucidated the molecular characteristics of TEs in land plants and animals using bioinformatics and in silico mutational approach. We discovered that the GC-rich class I TEs is the predominant class of TEs in animal, but the AT-rich class II TEs is prevalent in plants. The GC-rich class I TEs appears to be evolved within the animals. On contrary, the preserved in AT-rich in class II TEs is believed to be contributed in host defence systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物和动物转座因子的硅分析。
转座因子(te)在真核生物的进化中起着重要的作用。te根据其在基因组中的特性广泛分布。本研究利用生物信息学和芯片突变的方法阐明了陆生动植物TEs的分子特征。我们发现富含gc的I类TEs在动物中占主导地位,而富含at的II类TEs在植物中普遍存在。富含gc的I类TEs似乎是在动物体内进化而来的。相反,保存在富含at的II类te中被认为对宿主防御系统有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1