Fast decision tree-based method to index large DNA-protein sequence databases using hybrid distributed-shared memory programming model.

Khalid Mohammad Jaber, Rosni Abdullah, Nur'Aini Abdul Rashid
{"title":"Fast decision tree-based method to index large DNA-protein sequence databases using hybrid distributed-shared memory programming model.","authors":"Khalid Mohammad Jaber,&nbsp;Rosni Abdullah,&nbsp;Nur'Aini Abdul Rashid","doi":"10.1504/IJBRA.2014.060765","DOIUrl":null,"url":null,"abstract":"<p><p>In recent times, the size of biological databases has increased significantly, with the continuous growth in the number of users and rate of queries; such that some databases have reached the terabyte size. There is therefore, the increasing need to access databases at the fastest rates possible. In this paper, the decision tree indexing model (PDTIM) was parallelised, using a hybrid of distributed and shared memory on resident database; with horizontal and vertical growth through Message Passing Interface (MPI) and POSIX Thread (PThread), to accelerate the index building time. The PDTIM was implemented using 1, 2, 4 and 5 processors on 1, 2, 3 and 4 threads respectively. The results show that the hybrid technique improved the speedup, compared to a sequential version. It could be concluded from results that the proposed PDTIM is appropriate for large data sets, in terms of index building time. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.060765","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.060765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 5

Abstract

In recent times, the size of biological databases has increased significantly, with the continuous growth in the number of users and rate of queries; such that some databases have reached the terabyte size. There is therefore, the increasing need to access databases at the fastest rates possible. In this paper, the decision tree indexing model (PDTIM) was parallelised, using a hybrid of distributed and shared memory on resident database; with horizontal and vertical growth through Message Passing Interface (MPI) and POSIX Thread (PThread), to accelerate the index building time. The PDTIM was implemented using 1, 2, 4 and 5 processors on 1, 2, 3 and 4 threads respectively. The results show that the hybrid technique improved the speedup, compared to a sequential version. It could be concluded from results that the proposed PDTIM is appropriate for large data sets, in terms of index building time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合分布式共享内存编程模型的快速决策树的大型dna -蛋白质序列数据库索引方法。
近年来,随着用户数量和查询率的不断增长,生物数据库的规模显著增加;以至于一些数据库已经达到了tb级的大小。因此,越来越需要以尽可能快的速度访问数据库。本文将决策树索引模型(PDTIM)并行化,在驻留数据库上采用分布式内存和共享内存的混合模式;通过消息传递接口(MPI)和POSIX线程(PThread)实现横向和纵向增长,以加快索引构建时间。PDTIM分别在1、2、3和4个线程上使用1、2、4和5个处理器实现。结果表明,与串行版本相比,混合技术提高了加速。从结果可以得出结论,就索引构建时间而言,所提出的PDTIM适用于大型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1