Weiwei He, Wayne Wamer, Qingsu Xia, Jun-jie Yin, Peter P Fu
{"title":"Enzyme-like activity of nanomaterials.","authors":"Weiwei He, Wayne Wamer, Qingsu Xia, Jun-jie Yin, Peter P Fu","doi":"10.1080/10590501.2014.907462","DOIUrl":null,"url":null,"abstract":"<p><p>Due to possessing an extremely small size and a large surface area per unit of volume, nanomaterials have specific characteristic physical, chemical, photochemical, and biological properties that are very useful in many new applications. Nanoparticles' catalytic activity and intrinsic ability in generating or scavenging reactive oxygen species in general can be used to mimic the catalytic activity of natural enzymes. Many nanoparticles with enzyme-like activities have been found, potentially capable of being applied for commercial uses, such as in biosensors, pharmaceutical processes, and the food industry. To date, a variety of nanoparticles, especially those formed from noble metals, have been determined to possess oxidase-like, peroxidase-like, catalase-like, and/or superoxide dismutase-like activity. The ability of nanoparticles to mimic enzymatic activity, especially peroxidase mimics, can be used in a variety of applications, such as detection of glucose in biological samples and waste water treatment. To study the enzyme-like activity of nanoparticles, the electron spin resonance method represents a critically important and convenient analytical approach for zero-time detection of the reactive substrates and products as well as for mechanism determination. </p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"32 2","pages":"186-211"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2014.907462","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2014.907462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 132
Abstract
Due to possessing an extremely small size and a large surface area per unit of volume, nanomaterials have specific characteristic physical, chemical, photochemical, and biological properties that are very useful in many new applications. Nanoparticles' catalytic activity and intrinsic ability in generating or scavenging reactive oxygen species in general can be used to mimic the catalytic activity of natural enzymes. Many nanoparticles with enzyme-like activities have been found, potentially capable of being applied for commercial uses, such as in biosensors, pharmaceutical processes, and the food industry. To date, a variety of nanoparticles, especially those formed from noble metals, have been determined to possess oxidase-like, peroxidase-like, catalase-like, and/or superoxide dismutase-like activity. The ability of nanoparticles to mimic enzymatic activity, especially peroxidase mimics, can be used in a variety of applications, such as detection of glucose in biological samples and waste water treatment. To study the enzyme-like activity of nanoparticles, the electron spin resonance method represents a critically important and convenient analytical approach for zero-time detection of the reactive substrates and products as well as for mechanism determination.
期刊介绍:
Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.