BOTUX: bayesian-like operational taxonomic unit examiner.

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2014-01-01 Epub Date: 2014-05-28 DOI:10.1504/IJCBDD.2014.061652
Vishal N Koparde, Ricky S Adkins, Jennifer M Fettweis, Myrna G Serrano, Gregory A A Buck, Mark A Reimers, Nihar U Sheth
{"title":"BOTUX: bayesian-like operational taxonomic unit examiner.","authors":"Vishal N Koparde,&nbsp;Ricky S Adkins,&nbsp;Jennifer M Fettweis,&nbsp;Myrna G Serrano,&nbsp;Gregory A A Buck,&nbsp;Mark A Reimers,&nbsp;Nihar U Sheth","doi":"10.1504/IJCBDD.2014.061652","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian-like operational taxonomic unit examiner (BOTUX) is a new tool for the classification of 16S rRNA gene sequences into operational taxonomic units (OTUs) that addresses the problem of overestimation caused by errors introduced during PCR amplification and DNA sequencing steps. BOTUX utilises a grammar-based assignment strategy, where Bayesian models are built from each word of a given length (e.g., 8-mers). de novo analysis is possible with BOTUX as it does not require a training set, and updates probabilistic models as new sequences are recruited to an OTU. In benchmarking tests performed with real and simulated datasets of 16S rDNA sequences, BOTUX accurately identifies OTUs with comparable or better clustering efficiency and lower execution times than other OTU algorithms tested. BOTUX is the only OTU classifier, which allows incremental analysis of large datasets, and is also adept in clustering both 454 and Illumina datasets in a reasonable timeframe. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 2-3","pages":"130-45"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.061652","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.061652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian-like operational taxonomic unit examiner (BOTUX) is a new tool for the classification of 16S rRNA gene sequences into operational taxonomic units (OTUs) that addresses the problem of overestimation caused by errors introduced during PCR amplification and DNA sequencing steps. BOTUX utilises a grammar-based assignment strategy, where Bayesian models are built from each word of a given length (e.g., 8-mers). de novo analysis is possible with BOTUX as it does not require a training set, and updates probabilistic models as new sequences are recruited to an OTU. In benchmarking tests performed with real and simulated datasets of 16S rDNA sequences, BOTUX accurately identifies OTUs with comparable or better clustering efficiency and lower execution times than other OTU algorithms tested. BOTUX is the only OTU classifier, which allows incremental analysis of large datasets, and is also adept in clustering both 454 and Illumina datasets in a reasonable timeframe.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BOTUX:类贝叶斯操作分类单元审查员。
类贝叶斯操作分类单元检查器(BOTUX)是一种将16S rRNA基因序列划分为操作分类单元(OTUs)的新工具,解决了PCR扩增和DNA测序过程中由于误差而导致的高估问题。BOTUX使用基于语法的分配策略,其中贝叶斯模型是从给定长度的每个单词(例如8-mers)中构建的。使用BOTUX进行从头分析是可能的,因为它不需要训练集,并且随着新序列被招募到OTU而更新概率模型。在对16S rDNA序列的真实和模拟数据集进行的基准测试中,BOTUX准确地识别出OTU,具有与其他OTU算法相当或更好的聚类效率和更低的执行时间。BOTUX是唯一的OTU分类器,它允许对大型数据集进行增量分析,并且也擅长在合理的时间范围内对454和Illumina数据集进行聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1