Automatic cell segmentation in strongly agglomerated cell networks for different cell types.

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2014-01-01 Epub Date: 2014-05-28 DOI:10.1504/IJCBDD.2014.061641
S Buhl, B Neumann, S C Schäfer, A L Severing
{"title":"Automatic cell segmentation in strongly agglomerated cell networks for different cell types.","authors":"S Buhl,&nbsp;B Neumann,&nbsp;S C Schäfer,&nbsp;A L Severing","doi":"10.1504/IJCBDD.2014.061641","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a method of separating cells that are connected to each other forming clusters. The difference to many other publications covering similar topics is that the cell types we are dealing with form clusters of highly varying morphology. An advantage of our method is that it can be universally used for different cell types. The segmentation method is based on a growth simulation starting from the nuclei areas. To start the evaluation, the cells need to be made visible with a histological stain, in our case with the May-Grünwald solution. After the staining process has been completed, the nuclei areas can be distinguished from the other cell areas by a histogram backprojection algorithm. The presented method can, in addition to histological stained cells, also be applied to fluorescent-stained cells. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 2-3","pages":"259-77"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.061641","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.061641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method of separating cells that are connected to each other forming clusters. The difference to many other publications covering similar topics is that the cell types we are dealing with form clusters of highly varying morphology. An advantage of our method is that it can be universally used for different cell types. The segmentation method is based on a growth simulation starting from the nuclei areas. To start the evaluation, the cells need to be made visible with a histological stain, in our case with the May-Grünwald solution. After the staining process has been completed, the nuclei areas can be distinguished from the other cell areas by a histogram backprojection algorithm. The presented method can, in addition to histological stained cells, also be applied to fluorescent-stained cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强聚集细胞网络中不同细胞类型的自动细胞分割。
本文提出了一种分离细胞的方法,这些细胞相互连接形成集群。与许多其他涵盖类似主题的出版物的不同之处在于,我们正在处理的细胞类型形成了高度变化的形态集群。我们的方法的一个优点是,它可以普遍用于不同的细胞类型。该分割方法基于从核区开始的生长模拟。为了开始评估,需要用组织学染色使细胞可见,在我们的病例中使用may - gr nwald溶液。染色过程完成后,可以通过直方图反投影算法将细胞核区域与其他细胞区域区分开来。本方法除了可用于组织学染色细胞外,还可用于荧光染色细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1