Transfer entropy and transient limits of computation.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2014-06-23 DOI:10.1038/srep05394
Mikhail Prokopenko, Joseph T Lizier
{"title":"Transfer entropy and transient limits of computation.","authors":"Mikhail Prokopenko,&nbsp;Joseph T Lizier","doi":"10.1038/srep05394","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer entropy is a recently introduced information-theoretic measure quantifying directed statistical coherence between spatiotemporal processes, and is widely used in diverse fields ranging from finance to neuroscience. However, its relationships to fundamental limits of computation, such as Landauer's limit, remain unknown. Here we show that in order to increase transfer entropy (predictability) by one bit, heat flow must match or exceed Landauer's limit. Importantly, we generalise Landauer's limit to bi-directional information dynamics for non-equilibrium processes, revealing that the limit applies to prediction, in addition to retrodiction (information erasure). Furthermore, the results are related to negentropy, and to Bremermann's limit and the Bekenstein bound, producing, perhaps surprisingly, lower bounds on the computational deceleration and information loss incurred during an increase in predictability about the process. The identified relationships set new computational limits in terms of fundamental physical quantities, and establish transfer entropy as a central measure connecting information theory, thermodynamics and theory of computation. </p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":" ","pages":"5394"},"PeriodicalIF":3.9000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/srep05394","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/srep05394","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 53

Abstract

Transfer entropy is a recently introduced information-theoretic measure quantifying directed statistical coherence between spatiotemporal processes, and is widely used in diverse fields ranging from finance to neuroscience. However, its relationships to fundamental limits of computation, such as Landauer's limit, remain unknown. Here we show that in order to increase transfer entropy (predictability) by one bit, heat flow must match or exceed Landauer's limit. Importantly, we generalise Landauer's limit to bi-directional information dynamics for non-equilibrium processes, revealing that the limit applies to prediction, in addition to retrodiction (information erasure). Furthermore, the results are related to negentropy, and to Bremermann's limit and the Bekenstein bound, producing, perhaps surprisingly, lower bounds on the computational deceleration and information loss incurred during an increase in predictability about the process. The identified relationships set new computational limits in terms of fundamental physical quantities, and establish transfer entropy as a central measure connecting information theory, thermodynamics and theory of computation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传递熵和瞬态极限的计算。
传递熵是最近引入的一种量化时空过程间定向统计一致性的信息理论度量,被广泛应用于从金融到神经科学的各个领域。然而,它与基本计算极限的关系,如兰道尔极限,仍然是未知的。在这里,我们表明,为了增加传递熵(可预测性)一个比特,热流必须匹配或超过兰道尔的极限。重要的是,我们将兰道尔极限推广到非平衡过程的双向信息动力学,揭示了该极限适用于预测,除了回溯(信息擦除)。此外,结果与负熵、布雷默曼极限和贝肯斯坦界有关,可能令人惊讶的是,在增加过程的可预测性期间,计算减速和信息损失的下界产生了。确定的关系在基本物理量方面设定了新的计算极限,并将传递熵建立为连接信息论,热力学和计算理论的中心度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Eco-friendly synthesis of star-shaped Zn nanoparticles using Beta vulgaris peel extract and evaluation of their antibacterial, photocatalytic, and cytotoxic activities. Biotic and abiotic drivers of biomass carbon storage in peri-urban forests in Burkina Faso. Novel marker genes for simultaneous detection of Salmonella, EHEC O157:H7, and Cronobacter. Coupled modular simplicial graph neural network with snow ablation optimization for real-time fraud detection in payment systems. Temperature dependent behavior of hydrogen-bonded liquids: bridging experiments with molecular dynamics and DFT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1