Mei Hua , Jiaxi Lu , Di Qu , Chang Liu , Lei Zhang , Shanshan Li , Jianbo Chen , Yinshi Sun
{"title":"Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient","authors":"Mei Hua , Jiaxi Lu , Di Qu , Chang Liu , Lei Zhang , Shanshan Li , Jianbo Chen , Yinshi Sun","doi":"10.1016/j.foodchem.2019.01.114","DOIUrl":null,"url":null,"abstract":"<div><p>The insoluble dietary fiber from ginseng residue (ginseng-IDF) was extracted using the AOAC (Association of Official Analytical Chemists) method with content of 68.61%. Ginseng-IDF had a polysaccharide content of 18.87%, uronic acid content of 7.85%, protein content of 6.52%, and had ideal water-holding capacity (17.66 g/g), swelling ability (15.05 mL/g), and oil-holding capacity (1.78 g/g). Scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray diffraction analyses suggested that ginseng-IDF had the typical structures of hydrolysis fiber, polysaccharide functional groups, and crystal structure of cellulose. Different fiber components give ginseng-IDF a specified range of pyrolysis temperature, and it is suitable for application in food processing lower than 300 °C. In addition, ginseng-IDF exhibited notable glucose and sodium cholate adsorption, significantly improved nitrite adsorption at pH 2.0 and cholesterol adsorption at pH 7.0. The above results show that ginseng-IDF could be used as an ideal functional ingredient in food processing.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"286 ","pages":"Pages 522-529"},"PeriodicalIF":9.8000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.foodchem.2019.01.114","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814619301827","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 101
Abstract
The insoluble dietary fiber from ginseng residue (ginseng-IDF) was extracted using the AOAC (Association of Official Analytical Chemists) method with content of 68.61%. Ginseng-IDF had a polysaccharide content of 18.87%, uronic acid content of 7.85%, protein content of 6.52%, and had ideal water-holding capacity (17.66 g/g), swelling ability (15.05 mL/g), and oil-holding capacity (1.78 g/g). Scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray diffraction analyses suggested that ginseng-IDF had the typical structures of hydrolysis fiber, polysaccharide functional groups, and crystal structure of cellulose. Different fiber components give ginseng-IDF a specified range of pyrolysis temperature, and it is suitable for application in food processing lower than 300 °C. In addition, ginseng-IDF exhibited notable glucose and sodium cholate adsorption, significantly improved nitrite adsorption at pH 2.0 and cholesterol adsorption at pH 7.0. The above results show that ginseng-IDF could be used as an ideal functional ingredient in food processing.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.