Fungal laccases and their applications in bioremediation.

Q2 Biochemistry, Genetics and Molecular Biology Enzyme Research Pub Date : 2014-01-01 Epub Date: 2014-05-15 DOI:10.1155/2014/163242
Buddolla Viswanath, Bandi Rajesh, Avilala Janardhan, Arthala Praveen Kumar, Golla Narasimha
{"title":"Fungal laccases and their applications in bioremediation.","authors":"Buddolla Viswanath,&nbsp;Bandi Rajesh,&nbsp;Avilala Janardhan,&nbsp;Arthala Praveen Kumar,&nbsp;Golla Narasimha","doi":"10.1155/2014/163242","DOIUrl":null,"url":null,"abstract":"<p><p>Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/163242","citationCount":"351","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/163242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/5/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 351

Abstract

Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真菌漆酶及其在生物修复中的应用。
漆酶是一种蓝色多铜氧化酶,它能催化广谱底物的单电子氧化,例如邻苯二酚和对二酚、多酚、氨基酚、芳香或脂肪胺,同时还能将O2还原成H2O。因此,它们能够降解木质素,并在许多白腐真菌中大量存在。漆酶对工业废水进行脱色和脱毒,并有助于废水处理。它们对酚类和非酚类木质素相关化合物以及高顽固性环境污染物都有作用,可以有效地用于造纸和纸浆工业、纺织工业、异种生物降解和生物修复,并作为生物传感器。近年来,漆酶已被应用于纳米生物技术,这是一个新兴的研究领域,它催化电子转移反应而不需要额外的辅助因子。生物分子的固定化技术有微图技术、自组装单层技术和层接层技术等,这些技术可以固定化漆酶并保持其酶活性。本文就漆酶的真菌来源及其在环境保护中的应用作一综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Enzyme Research
Enzyme Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Isolation of Cellulose Degrading Fungi from Decaying Banana Pseudostem and Strelitzia alba Acetylcholinesterases from Leaf-Cutting ant Atta sexdens: Purification, Characterization, and Capillary Reactors for On-Flow Assays Lipolytic Enzymes with Hydrolytic and Esterification Activities Produced by Filamentous Fungi Isolated from Decomposition Leaves in an Aquatic Environment. Enzymatic Conversion of RBCs by α-N-Acetylgalactosaminidase from Spirosoma linguale. Thermostable Cellulases from the Yeast Trichosporon sp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1