Paras R Patel, Matthew D Gibson, Kip A Ludwig, Nicholas B Langhals
{"title":"Electrochemical sensing via selective surface modification of iridium microelectrodes to create a platinum black interface.","authors":"Paras R Patel, Matthew D Gibson, Kip A Ludwig, Nicholas B Langhals","doi":"10.1109/NER.2013.6696095","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to selectively deposit platinum black (PtB) on iridium microelectrodes and functionalize the surface for the purposes of choline sensing was investigated in this study. Platinum black was deposited by cycling 100-200 times between 0.5 V and -0.7 V in a solution of 1 mM K<sub>2</sub>PtCl<sub>6</sub> in 0.1 M KCl. Deposition of PtB showed good chemical stability as well as good adhesion following insertion into agarose gel as a model for brain insertion. Electrode sites were also tested for their oxidative capabilities of hydrogen peroxide during which they showed high current change in response to small concentration changes - attributable to the high surface area of the PtB. Sites were then coated with an enzyme solution containing choline oxidase, and a permselective layer of meta-phenylenediamine was added to filter interferents. Electrode sites yielded a high sensitivity to choline compared to interferents including ascorbic acid and dopamine.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"961-964"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NER.2013.6696095","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6696095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The ability to selectively deposit platinum black (PtB) on iridium microelectrodes and functionalize the surface for the purposes of choline sensing was investigated in this study. Platinum black was deposited by cycling 100-200 times between 0.5 V and -0.7 V in a solution of 1 mM K2PtCl6 in 0.1 M KCl. Deposition of PtB showed good chemical stability as well as good adhesion following insertion into agarose gel as a model for brain insertion. Electrode sites were also tested for their oxidative capabilities of hydrogen peroxide during which they showed high current change in response to small concentration changes - attributable to the high surface area of the PtB. Sites were then coated with an enzyme solution containing choline oxidase, and a permselective layer of meta-phenylenediamine was added to filter interferents. Electrode sites yielded a high sensitivity to choline compared to interferents including ascorbic acid and dopamine.