{"title":"Pairwise sequence alignment for very long sequences on GPUs.","authors":"Junjie Li, Sanjay Ranka, Sartaj Sahni","doi":"10.1504/IJBRA.2014.062989","DOIUrl":null,"url":null,"abstract":"<p><p>We develop novel single-GPU parallelisations of the Smith-Waterman algorithm for pairwise sequence alignment. Our algorithms, which are suitable for the alignment of a single pair of very long sequences, can be used to determine the alignment score as well as the actual alignment. Experimental results demonstrate an order of magnitude reduction in run time relative to competing GPU algorithms. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.062989","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.062989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 29
Abstract
We develop novel single-GPU parallelisations of the Smith-Waterman algorithm for pairwise sequence alignment. Our algorithms, which are suitable for the alignment of a single pair of very long sequences, can be used to determine the alignment score as well as the actual alignment. Experimental results demonstrate an order of magnitude reduction in run time relative to competing GPU algorithms.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.