PMS6: a fast algorithm for motif discovery.

Shibdas Bandyopadhyay, Sartaj Sahni, Sanguthevar Rajasekaran
{"title":"PMS6: a fast algorithm for motif discovery.","authors":"Shibdas Bandyopadhyay,&nbsp;Sartaj Sahni,&nbsp;Sanguthevar Rajasekaran","doi":"10.1504/IJBRA.2014.062990","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new algorithm, PMS6, for the (l,d)-motif discovery problem in which we are to find all strings of length l that appear in every string of a given set of strings with at most d mismatches. The run time ratio PMS5/PMS6, where PMS5 is the fastest previously known algorithm for motif discovery in large instances, ranges from a high of 2.20 for the (21,8) challenge instances to a low of 1.69 for the (17,6) challenge instances. Both PMS5 and PMS6 require some amount of pre-processing. The pre-processing time for PMS6 is 34 times faster than that for PMS5 for (23,9) instances. When pre-processing time is factored in, the run time ratio PMS5/PMS6 is as high as 2.75 for (13,4) instances and as low as 1.95 for (17,6) instances. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.062990","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.062990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 24

Abstract

We propose a new algorithm, PMS6, for the (l,d)-motif discovery problem in which we are to find all strings of length l that appear in every string of a given set of strings with at most d mismatches. The run time ratio PMS5/PMS6, where PMS5 is the fastest previously known algorithm for motif discovery in large instances, ranges from a high of 2.20 for the (21,8) challenge instances to a low of 1.69 for the (17,6) challenge instances. Both PMS5 and PMS6 require some amount of pre-processing. The pre-processing time for PMS6 is 34 times faster than that for PMS5 for (23,9) instances. When pre-processing time is factored in, the run time ratio PMS5/PMS6 is as high as 2.75 for (13,4) instances and as low as 1.95 for (17,6) instances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PMS6:一种快速的motif发现算法。
针对(l,d)基序发现问题,我们提出了一种新的算法PMS6,该算法要求在给定的字符串集合中,找出所有长度为l且不匹配最多为d的字符串。运行时间比PMS5/PMS6,其中PMS5是已知的在大型实例中发现motif的最快算法,其范围从(21,8)挑战实例的2.20到(17,6)挑战实例的1.69不等。PMS5和PMS6都需要一定数量的预处理。对于(23,9)个实例,PMS6的预处理时间比PMS5快34倍。如果将预处理时间考虑在内,运行时比率PMS5/PMS6在(13,4)实例中高达2.75,在(17,6)实例中低至1.95。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1