Specialized tools are needed when searching the web for rare disease diagnoses.

Rare diseases (Austin, Tex.) Pub Date : 2013-05-16 eCollection Date: 2013-01-01 DOI:10.4161/rdis.25001
Radu Dragusin, Paula Petcu, Christina Lioma, Birger Larsen, Henrik L Jørgensen, Ingemar J Cox, Lars Kai Hansen, Peter Ingwersen, Ole Winther
{"title":"Specialized tools are needed when searching the web for rare disease diagnoses.","authors":"Radu Dragusin,&nbsp;Paula Petcu,&nbsp;Christina Lioma,&nbsp;Birger Larsen,&nbsp;Henrik L Jørgensen,&nbsp;Ingemar J Cox,&nbsp;Lars Kai Hansen,&nbsp;Peter Ingwersen,&nbsp;Ole Winther","doi":"10.4161/rdis.25001","DOIUrl":null,"url":null,"abstract":"<p><p>In our recent paper, we study web search as an aid in the process of diagnosing rare diseases. To answer the question of how well Google Search and PubMed perform, we created an evaluation framework with 56 diagnostic cases and made our own specialized search engine, FindZebra (findzebra.com). FindZebra uses a set of publicly available curated sources on rare diseases and an open-source information retrieval system, Indri. Our evaluation and the feedback received after the publication of our paper both show that FindZebra outperforms Google Search and PubMed. In this paper, we summarize the original findings and the response to FindZebra, discuss why Google Search is not designed for specialized tasks and outline some of the current trends in using web resources and social media for medical diagnosis. </p>","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"1 ","pages":"e25001"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/rdis.25001","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare diseases (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/rdis.25001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In our recent paper, we study web search as an aid in the process of diagnosing rare diseases. To answer the question of how well Google Search and PubMed perform, we created an evaluation framework with 56 diagnostic cases and made our own specialized search engine, FindZebra (findzebra.com). FindZebra uses a set of publicly available curated sources on rare diseases and an open-source information retrieval system, Indri. Our evaluation and the feedback received after the publication of our paper both show that FindZebra outperforms Google Search and PubMed. In this paper, we summarize the original findings and the response to FindZebra, discuss why Google Search is not designed for specialized tasks and outline some of the current trends in using web resources and social media for medical diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在网上搜索罕见疾病诊断时,需要专门的工具。
在我们最近的论文中,我们研究了网络搜索在诊断罕见病过程中的辅助作用。为了回答Google搜索和PubMed表现如何的问题,我们创建了一个包含56个诊断案例的评估框架,并制作了我们自己的专业搜索引擎FindZebra (findzebra.com)。FindZebra使用了一套关于罕见疾病的公开资源和一个开源信息检索系统Indri。我们的评估和论文发表后收到的反馈都表明FindZebra优于Google Search和PubMed。在本文中,我们总结了最初的发现和对FindZebra的回应,讨论了为什么谷歌搜索不是为专门的任务而设计的,并概述了目前使用网络资源和社交媒体进行医疗诊断的一些趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primary Immunodeficiency Chronic Myeloid Leukemia Milestone Histories and Paradigmatic Genetic Discoveries of Chronic Myeloid Leukemia (CML) Duchenne Muscular Dystrophy (DMD) Diagnosis: Past and Present Perspectives Rare Disease Advocacy Groups and Their Significance in Diagnosis, Management, Treatment, and Prevention of Rare Diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1