Fast and Accurate Calculation of Protein Depth by Euclidean Distance Transform.

Dong Xu, Hua Li, Yang Zhang
{"title":"Fast and Accurate Calculation of Protein Depth by Euclidean Distance Transform.","authors":"Dong Xu,&nbsp;Hua Li,&nbsp;Yang Zhang","doi":"10.1007/978-3-642-37195-0_30","DOIUrl":null,"url":null,"abstract":"<p><p>The depth of each atom/residue in a protein structure is a key attribution that has been widely used in protein structure modeling and function annotation. However, the accurate calculation of depth is time consuming. Here, we propose to use the Euclidean distance transform (EDT) to calculate the depth, which conveniently converts the protein structure to a 3D gray-scale image with each pixel labeling the minimum distance of the pixel to the surface of the molecule (i.e. the depth). We tested the proposed EDT method on a set of 261 non-redundant protein structures. The data show that the EDT method is 2.6 times faster than the widely used method by Chakravarty and Varadarajan. The depth value by EDT method is also highly accurate, which is almost identical to the depth calculated by exhaustive search (Pearson's correlation coefficient≈1). We believe the EDT-based depth calculation program can be used as an efficient tool to assist the studies of protein fold recognition and structure-based function annotation.</p>","PeriodicalId":74675,"journal":{"name":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","volume":"7821 ","pages":"304-316"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098708/pdf/nihms592637.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-37195-0_30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The depth of each atom/residue in a protein structure is a key attribution that has been widely used in protein structure modeling and function annotation. However, the accurate calculation of depth is time consuming. Here, we propose to use the Euclidean distance transform (EDT) to calculate the depth, which conveniently converts the protein structure to a 3D gray-scale image with each pixel labeling the minimum distance of the pixel to the surface of the molecule (i.e. the depth). We tested the proposed EDT method on a set of 261 non-redundant protein structures. The data show that the EDT method is 2.6 times faster than the widely used method by Chakravarty and Varadarajan. The depth value by EDT method is also highly accurate, which is almost identical to the depth calculated by exhaustive search (Pearson's correlation coefficient≈1). We believe the EDT-based depth calculation program can be used as an efficient tool to assist the studies of protein fold recognition and structure-based function annotation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧几里得距离变换快速准确地计算蛋白质深度。
蛋白质结构中每个原子/残基的深度是一个关键属性,已广泛应用于蛋白质结构建模和功能标注。然而,精确计算深度是费时的。在这里,我们提出使用欧几里得距离变换(EDT)来计算深度,它方便地将蛋白质结构转换为三维灰度图像,每个像素标记像素到分子表面的最小距离(即深度)。我们在261个非冗余蛋白结构上测试了所提出的EDT方法。数据显示,EDT方法比Chakravarty和Varadarajan广泛使用的方法快2.6倍。EDT法的深度值精度也很高,与穷穷搜索法计算的深度几乎相同(Pearson相关系数≈1)。我们相信基于edd的深度计算程序可以作为辅助蛋白质折叠识别和基于结构的功能标注研究的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Discovery of Genetic Relatives across Large-Scale and Distributed Genomic Datasets. Research in Computational Molecular Biology: 27th Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 16–19, 2023, Proceedings Comparative Analysis of Alternative Splicing Events in Foliar Transcriptomes of Potato Plants Inoculated with Phytophthora Infestans Identification and Bioinformatics Analysis of TCP Family Genes in Tree Peony Computational Molecular Biology Interdisciplinary Technological Integration and New Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1