Shirley Ann Williams, Melissa Terras, Claire Warwick
{"title":"How Twitter Is Studied in the Medical Professions: A Classification of Twitter Papers Indexed in PubMed.","authors":"Shirley Ann Williams, Melissa Terras, Claire Warwick","doi":"10.2196/med20.2269","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Since their inception, Twitter and related microblogging systems have provided a rich source of information for researchers and have attracted interest in their affordances and use. Since 2009 PubMed has included 123 journal articles on medicine and Twitter, but no overview exists as to how the field uses Twitter in research.</p><p><strong>Objective: </strong>This paper aims to identify published work relating to Twitter within the fields indexed by PubMed, and then to classify it. This classification will provide a framework in which future researchers will be able to position their work, and to provide an understanding of the current reach of research using Twitter in medical disciplines.</p><p><strong>Methods: </strong>Papers on Twitter and related topics were identified and reviewed. The papers were then qualitatively classified based on the paper's title and abstract to determine their focus. The work that was Twitter focused was studied in detail to determine what data, if any, it was based on, and from this a categorization of the data set size used in the studies was developed. Using open coded content analysis additional important categories were also identified, relating to the primary methodology, domain, and aspect.</p><p><strong>Results: </strong>As of 2012, PubMed comprises more than 21 million citations from biomedical literature, and from these a corpus of 134 potentially Twitter related papers were identified, eleven of which were subsequently found not to be relevant. There were no papers prior to 2009 relating to microblogging, a term first used in 2006. Of the remaining 123 papers which mentioned Twitter, thirty were focused on Twitter (the others referring to it tangentially). The early Twitter focused papers introduced the topic and highlighted the potential, not carrying out any form of data analysis. The majority of published papers used analytic techniques to sort through thousands, if not millions, of individual tweets, often depending on automated tools to do so. Our analysis demonstrates that researchers are starting to use knowledge discovery methods and data mining techniques to understand vast quantities of tweets: the study of Twitter is becoming quantitative research.</p><p><strong>Conclusions: </strong>This work is to the best of our knowledge the first overview study of medical related research based on Twitter and related microblogging. We have used 5 dimensions to categorize published medical related research on Twitter. This classification provides a framework within which researchers studying development and use of Twitter within medical related research, and those undertaking comparative studies of research, relating to Twitter in the area of medicine and beyond, can position and ground their work.</p>","PeriodicalId":90648,"journal":{"name":"Medicine 2.0","volume":"2 2","pages":"e2"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084770/pdf/","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine 2.0","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/med20.2269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Background: Since their inception, Twitter and related microblogging systems have provided a rich source of information for researchers and have attracted interest in their affordances and use. Since 2009 PubMed has included 123 journal articles on medicine and Twitter, but no overview exists as to how the field uses Twitter in research.
Objective: This paper aims to identify published work relating to Twitter within the fields indexed by PubMed, and then to classify it. This classification will provide a framework in which future researchers will be able to position their work, and to provide an understanding of the current reach of research using Twitter in medical disciplines.
Methods: Papers on Twitter and related topics were identified and reviewed. The papers were then qualitatively classified based on the paper's title and abstract to determine their focus. The work that was Twitter focused was studied in detail to determine what data, if any, it was based on, and from this a categorization of the data set size used in the studies was developed. Using open coded content analysis additional important categories were also identified, relating to the primary methodology, domain, and aspect.
Results: As of 2012, PubMed comprises more than 21 million citations from biomedical literature, and from these a corpus of 134 potentially Twitter related papers were identified, eleven of which were subsequently found not to be relevant. There were no papers prior to 2009 relating to microblogging, a term first used in 2006. Of the remaining 123 papers which mentioned Twitter, thirty were focused on Twitter (the others referring to it tangentially). The early Twitter focused papers introduced the topic and highlighted the potential, not carrying out any form of data analysis. The majority of published papers used analytic techniques to sort through thousands, if not millions, of individual tweets, often depending on automated tools to do so. Our analysis demonstrates that researchers are starting to use knowledge discovery methods and data mining techniques to understand vast quantities of tweets: the study of Twitter is becoming quantitative research.
Conclusions: This work is to the best of our knowledge the first overview study of medical related research based on Twitter and related microblogging. We have used 5 dimensions to categorize published medical related research on Twitter. This classification provides a framework within which researchers studying development and use of Twitter within medical related research, and those undertaking comparative studies of research, relating to Twitter in the area of medicine and beyond, can position and ground their work.