Gene set analysis for GWAS: assessing the use of modified Kolmogorov-Smirnov statistics.

IF 0.8 4区 数学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Statistical Applications in Genetics and Molecular Biology Pub Date : 2014-10-01 DOI:10.1515/sagmb-2013-0015
Birgit Debrabant, Mette Soerensen
{"title":"Gene set analysis for GWAS: assessing the use of modified Kolmogorov-Smirnov statistics.","authors":"Birgit Debrabant,&nbsp;Mette Soerensen","doi":"10.1515/sagmb-2013-0015","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the corresponding test can be considered to infer the classical self-contained null hypothesis. We use simulations to estimate the power for different kinds of alternatives, and to assess the impact of the weight parameter of the modified KS statistic on the power. Finally, we show the analogy between the weight parameter and the genesis and distribution of the gene-level statistics, and illustrate the effects of differential weighting in a real-life example.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"13 5","pages":"553-66"},"PeriodicalIF":0.8000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2013-0015","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2013-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

We discuss the use of modified Kolmogorov-Smirnov (KS) statistics in the context of gene set analysis and review corresponding null and alternative hypotheses. Especially, we show that, when enhancing the impact of highly significant genes in the calculation of the test statistic, the corresponding test can be considered to infer the classical self-contained null hypothesis. We use simulations to estimate the power for different kinds of alternatives, and to assess the impact of the weight parameter of the modified KS statistic on the power. Finally, we show the analogy between the weight parameter and the genesis and distribution of the gene-level statistics, and illustrate the effects of differential weighting in a real-life example.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GWAS的基因集分析:评估改良Kolmogorov-Smirnov统计的使用。
我们讨论了改良Kolmogorov-Smirnov (KS)统计在基因集分析中的应用,并回顾了相应的零假设和替代假设。特别是,我们表明,在计算检验统计量时,当增强高度显著基因的影响时,可以考虑相应的检验来推断经典的自包含零假设。我们用仿真的方法估计了不同类型的备选方案的功率,并评估了修正后的KS统计量的权重参数对功率的影响。最后,我们展示了权重参数与基因水平统计的起源和分布之间的类比,并在现实生活中说明了差异权重的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
自引率
11.10%
发文量
8
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
期刊最新文献
When is the allele-sharing dissimilarity between two populations exceeded by the allele-sharing dissimilarity of a population with itself? Sparse latent factor regression models for genome-wide and epigenome-wide association studies Low variability in the underlying cellular landscape adversely affects the performance of interaction-based approaches for conducting cell-specific analyses of DNA methylation in bulk samples. AdaReg: data adaptive robust estimation in linear regression with application in GTEx gene expressions. Collocation based training of neural ordinary differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1