Marc T Hamilton, Deborah G Hamilton, Theodore W Zderic
{"title":"Sedentary behavior as a mediator of type 2 diabetes.","authors":"Marc T Hamilton, Deborah G Hamilton, Theodore W Zderic","doi":"10.1159/000357332","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past 5 years, the fastest growing new area of physical activity research centered around the concept that the large amount of time people spend sitting inactive may have significant physiological consequences hazardous to human health, including risk for type 2 diabetes and poor metabolism of lipids and glucose. Meta-analysis (10 studies) suggests there is a 112% greater relative risk associated with a large duration of sedentary behavior for type 2 diabetes. Meta-analysis also indicates significantly greater odds for metabolic syndrome. We also summarize results for 7 studies using objective measures of total sedentary time and focusing on cardiometabolic risks in persons at high risk for type 2 diabetes or already diagnosed with type 2 diabetes. The underlying hypothesis introduced in 2004 by the inactivity physiology paradigm has been that frequent and abundant contractile activity by certain types of skeletal muscle can have a potent influence on key physiological processes, even when the intensity is below that achieved through exercise. We explain some of the mechanisms for why the metabolism in slow-twitch oxidative skeletal muscle is key for understanding the healthy responses to low-intensity physical activity (LIPA). Findings from objective measures from inclinometry indicated that the quartile range for weekly sedentary time is ∼29 h/week. The total daily time that people sit, stand, and accumulate nonexercise steps is independent of traditionally recommended moderate-vigorous physical activity. The large amount of sedentary time associated with risk for disease can only be reduced significantly with safe and nonfatiguing LIPA, especially in the most at-risk proportion of the population. Importantly, experimental studies are starting to indicate that it will be especially insightful to understand the acute dose-response effects of LIPA in order to understand why reducing sedentary time can improve lipid and glucose metabolism for the prevention and treatment of chronic disorders related to type 2 diabetes.</p>","PeriodicalId":18475,"journal":{"name":"Medicine and sport science","volume":"60 ","pages":"11-26"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000357332","citationCount":"119","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine and sport science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000357332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119
Abstract
Over the past 5 years, the fastest growing new area of physical activity research centered around the concept that the large amount of time people spend sitting inactive may have significant physiological consequences hazardous to human health, including risk for type 2 diabetes and poor metabolism of lipids and glucose. Meta-analysis (10 studies) suggests there is a 112% greater relative risk associated with a large duration of sedentary behavior for type 2 diabetes. Meta-analysis also indicates significantly greater odds for metabolic syndrome. We also summarize results for 7 studies using objective measures of total sedentary time and focusing on cardiometabolic risks in persons at high risk for type 2 diabetes or already diagnosed with type 2 diabetes. The underlying hypothesis introduced in 2004 by the inactivity physiology paradigm has been that frequent and abundant contractile activity by certain types of skeletal muscle can have a potent influence on key physiological processes, even when the intensity is below that achieved through exercise. We explain some of the mechanisms for why the metabolism in slow-twitch oxidative skeletal muscle is key for understanding the healthy responses to low-intensity physical activity (LIPA). Findings from objective measures from inclinometry indicated that the quartile range for weekly sedentary time is ∼29 h/week. The total daily time that people sit, stand, and accumulate nonexercise steps is independent of traditionally recommended moderate-vigorous physical activity. The large amount of sedentary time associated with risk for disease can only be reduced significantly with safe and nonfatiguing LIPA, especially in the most at-risk proportion of the population. Importantly, experimental studies are starting to indicate that it will be especially insightful to understand the acute dose-response effects of LIPA in order to understand why reducing sedentary time can improve lipid and glucose metabolism for the prevention and treatment of chronic disorders related to type 2 diabetes.