A robust optimization framework for forest biorefineries design considering uncertainties on biomass growth and product selling prices

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-07-01 DOI:10.1016/j.compchemeng.2023.108256
Bruno Theozzo, Moises Teles dos Santos
{"title":"A robust optimization framework for forest biorefineries design considering uncertainties on biomass growth and product selling prices","authors":"Bruno Theozzo,&nbsp;Moises Teles dos Santos","doi":"10.1016/j.compchemeng.2023.108256","DOIUrl":null,"url":null,"abstract":"<div><p>The dependence of biomass growth on uncontrolled environmental factors and the lack of confidence in product selling price estimation imposes challenges for the efficient design of biorefineries, especially for forest systems, which present complex and long-termed growth behavior. The present work proposes the expansion of an optimization framework for forest biorefineries design to handle uncertainties on both biomass productivity and product selling prices. A robust formulation is proposed under a box and polyhedral uncertainty set formulation allowing its conservatism degree to be controlled. A case study of a eucalyptus biorefinery in Brazil illustrates the model's capabilities. The canonical worst-case approach to uncertainties on selling prices leads to a null optimal Net Present Value (NPV) and, on biomass growth, leads to a design that uses a 70% excess of lands. Scenarios of a controlled degree of conservatism lead to designs closer to the uncertainty-free optimal NPV of 136 bi BRL.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"175 ","pages":"Article 108256"},"PeriodicalIF":3.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423001266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The dependence of biomass growth on uncontrolled environmental factors and the lack of confidence in product selling price estimation imposes challenges for the efficient design of biorefineries, especially for forest systems, which present complex and long-termed growth behavior. The present work proposes the expansion of an optimization framework for forest biorefineries design to handle uncertainties on both biomass productivity and product selling prices. A robust formulation is proposed under a box and polyhedral uncertainty set formulation allowing its conservatism degree to be controlled. A case study of a eucalyptus biorefinery in Brazil illustrates the model's capabilities. The canonical worst-case approach to uncertainties on selling prices leads to a null optimal Net Present Value (NPV) and, on biomass growth, leads to a design that uses a 70% excess of lands. Scenarios of a controlled degree of conservatism lead to designs closer to the uncertainty-free optimal NPV of 136 bi BRL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑生物量增长和产品销售价格不确定性的森林生物精炼厂设计稳健优化框架
生物量增长对不受控制的环境因素的依赖以及对产品销售价格估计的缺乏信心,对生物精炼厂的有效设计,特别是森林系统的设计提出了挑战,因为森林系统具有复杂和长期的生长行为。目前的工作建议扩大森林生物精炼厂设计的优化框架,以处理生物量生产力和产品销售价格的不确定性。提出了一种可控制箱体多面体不确定性集合保守度的鲁棒公式。对巴西一家桉树生物精炼厂的案例研究说明了该模型的能力。销售价格不确定性的典型最坏情况方法导致零最优净现值(NPV),而在生物质增长方面,导致设计使用超过70%的土地。在保守性可控的情况下,设计更接近于无不确定性的最优NPV为136bi BRL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
HOFLON: Hybrid Offline Learning and Online Optimization for process start-up and grade-transition control Big data-driven predictive control for nonlinear systems based on kernel density estimation of data trajectories Uncertainty-aware joint inventory-transportation decisions in supply chain: A diffusion model-based multi-agent reinforcement learning approach with lead times estimation Physics-informed graph transformer fusion for leakage detection and grading in water distribution networks Surrogate-based optimization via clustering for box-constrained problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1