Polynomial NARX-based nonlinear model predictive control of modular chemical systems

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-09-01 DOI:10.1016/j.compchemeng.2023.108272
Anastasia Nikolakopoulou, Richard D. Braatz
{"title":"Polynomial NARX-based nonlinear model predictive control of modular chemical systems","authors":"Anastasia Nikolakopoulou,&nbsp;Richard D. Braatz","doi":"10.1016/j.compchemeng.2023.108272","DOIUrl":null,"url":null,"abstract":"<div><p>The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic<span><span> models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear </span>model predictive control<span> (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.</span></span></p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"177 ","pages":"Article 108272"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423001424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

The design of control systems for modular chemical systems typically requires the identification of nonlinear dynamic models. Mechanistic models for modular chemical systems are typically of high order, which results in high online computational cost when the models are incorporated into the nonlinear model predictive control (NMPC) formulations developed for explicitly taking constraints into account. This article proposes the use of a particular class of nonlinear input–output models, polynomial nonlinear-autoregressive-with-exogenous-inputs (NARX) models, in the NMPC formulations. A machine learning algorithm, elastic net, is used to select which terms to include within the NARX polynomial series representation. The approach for constructing sparse predictive models and their use in real-time implementable NMPC are demonstrated in a two-input two-output chemical reactor case study. The Julia programming language is used to solve the NMPC optimization problem, resulting in low online computational cost.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多项式narx的模块化化工系统非线性模型预测控制
模块化化工系统的控制系统设计通常需要识别非线性动态模型。模块化化学系统的机制模型通常是高阶的,这导致当模型被纳入为明确考虑约束而开发的非线性模型预测控制(NMPC)公式时,在线计算成本很高。本文建议在NMPC公式中使用一类特殊的非线性输入输出模型,多项式非线性自回归外生输入(NARX)模型。一个机器学习算法,弹性网,被用来选择哪些项包括在NARX多项式级数表示。以一个双输入双输出化学反应器为例,阐述了稀疏预测模型的构建方法及其在实时可实现NMPC中的应用。采用Julia编程语言解决NMPC优化问题,降低了在线计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1