{"title":"Androgen action.","authors":"Ralf Werner, Paul-Martin Holterhus","doi":"10.1159/000363610","DOIUrl":null,"url":null,"abstract":"<p><p>Androgens are important for male sex development and physiology. Their actions are mediated by the androgen receptor (AR), a ligand-dependent nuclear transcription factor. The activity of the AR is controlled at multiple stages due to ligand binding and induced structural changes assisted by the foldosome, compartmentalization, recruitment of coregulators, posttranslational modifications and chromatin remodeling, leading to subsequent transcription of androgen-responsive target genes. Beside these short-term androgen actions, there is phenomenological and experimental evidence of long-term androgen programming in mammals and in the human during sensitive programming time windows, both pre- and postnatally. At the molecular level, research into androgen insensitivity syndrome has unmasked androgen programming at the transcriptome level, in genital fibroblasts and peripheral blood mononuclear cells, and at the epigenome level. Androgens are crucial for male sex development and physiology during embryogenesis, at puberty and in adult life. Testosterone and its more potent metabolite, dihydrotestosterone, which is converted from testosterone within the target cell by 5α-reductase II, are the main androgens involved in male sex differentiation. Androgen action is mediated by a single AR. The AR belongs to the nuclear receptor 3 group C, composed of the glucocorticoid receptor (NR3C1), mineralocorticoid receptor (NR3C2), progesterone receptor (NR3C3) and AR (NR3C4), and acts as a ligand-dependent transcription factor.</p>","PeriodicalId":72906,"journal":{"name":"Endocrine development","volume":"27 ","pages":"28-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000363610","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000363610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Androgens are important for male sex development and physiology. Their actions are mediated by the androgen receptor (AR), a ligand-dependent nuclear transcription factor. The activity of the AR is controlled at multiple stages due to ligand binding and induced structural changes assisted by the foldosome, compartmentalization, recruitment of coregulators, posttranslational modifications and chromatin remodeling, leading to subsequent transcription of androgen-responsive target genes. Beside these short-term androgen actions, there is phenomenological and experimental evidence of long-term androgen programming in mammals and in the human during sensitive programming time windows, both pre- and postnatally. At the molecular level, research into androgen insensitivity syndrome has unmasked androgen programming at the transcriptome level, in genital fibroblasts and peripheral blood mononuclear cells, and at the epigenome level. Androgens are crucial for male sex development and physiology during embryogenesis, at puberty and in adult life. Testosterone and its more potent metabolite, dihydrotestosterone, which is converted from testosterone within the target cell by 5α-reductase II, are the main androgens involved in male sex differentiation. Androgen action is mediated by a single AR. The AR belongs to the nuclear receptor 3 group C, composed of the glucocorticoid receptor (NR3C1), mineralocorticoid receptor (NR3C2), progesterone receptor (NR3C3) and AR (NR3C4), and acts as a ligand-dependent transcription factor.