Yuka Okawa, Jing Li, Arghya Basu, Joseph R Casey, Reinhart A F Reithmeier
{"title":"Differential roles of tryptophan residues in the functional expression of human anion exchanger 1 (AE1, Band 3, SLC4A1).","authors":"Yuka Okawa, Jing Li, Arghya Basu, Joseph R Casey, Reinhart A F Reithmeier","doi":"10.3109/09687688.2014.955829","DOIUrl":null,"url":null,"abstract":"<p><p>Anion exchanger 1 (AE1) is a 95 kDa glycoprotein that facilitates Cl(-)=HCO(-)(3) exchange across the erythrocyte plasma membrane. This transport activity resides in the 52 kDa C-terminal membrane domain (Gly(361)-Val(911)) predicted to span the membrane 14 times. To explore the role of tryptophan (Trp) residues in AE1 function, the seven endogenous Trp residues in the membrane domain were mutated individually to alanine (Ala) and phenylalanine (Phe). Expression levels, cell surface abundance, inhibitor binding and transport activities of the mutants were measured upon expression in HEK-293 cells. The seven Trp residues divided into three classes according the impact of mutations on the functional expression of AE1: Class 1, dramatically decreased expression (Trp(492) and Trp(496)); Class 2, decreased expression by Ala substitution but not Phe (Trp(648), Trp(662) and Trp(723)); and Class 3, normal expression (Trp(831) and Trp(848)). The results indicate that Trp residues play differential roles in AE1 expression and function depending on their location in the protein and that Trp mutants with low expression are misfolded and retained in the endoplasmic reticulum.</p>","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"31 7-8","pages":"211-27"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688.2014.955829","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688.2014.955829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/9/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
Abstract
Anion exchanger 1 (AE1) is a 95 kDa glycoprotein that facilitates Cl(-)=HCO(-)(3) exchange across the erythrocyte plasma membrane. This transport activity resides in the 52 kDa C-terminal membrane domain (Gly(361)-Val(911)) predicted to span the membrane 14 times. To explore the role of tryptophan (Trp) residues in AE1 function, the seven endogenous Trp residues in the membrane domain were mutated individually to alanine (Ala) and phenylalanine (Phe). Expression levels, cell surface abundance, inhibitor binding and transport activities of the mutants were measured upon expression in HEK-293 cells. The seven Trp residues divided into three classes according the impact of mutations on the functional expression of AE1: Class 1, dramatically decreased expression (Trp(492) and Trp(496)); Class 2, decreased expression by Ala substitution but not Phe (Trp(648), Trp(662) and Trp(723)); and Class 3, normal expression (Trp(831) and Trp(848)). The results indicate that Trp residues play differential roles in AE1 expression and function depending on their location in the protein and that Trp mutants with low expression are misfolded and retained in the endoplasmic reticulum.
期刊介绍:
Cessation.
Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas:
• Membrane receptors and signalling
• Membrane transporters, pores and channels
• Synthesis and structure of membrane proteins
• Membrane translocation and targeting
• Lipid organisation and asymmetry
• Model membranes
• Membrane trafficking
• Cytoskeletal and extracellular membrane interactions
• Cell adhesion and intercellular interactions
• Molecular dynamics and molecular modelling of membranes.
• Antimicrobial peptides.