Mass spectrometric analysis of oxidized eicosapentaenoic Acid sodium salt.

Lipid insights Pub Date : 2013-05-06 eCollection Date: 2013-01-01 DOI:10.4137/LPI.S10862
Kelsey D Jordan, Rita K Upmacis
{"title":"Mass spectrometric analysis of oxidized eicosapentaenoic Acid sodium salt.","authors":"Kelsey D Jordan,&nbsp;Rita K Upmacis","doi":"10.4137/LPI.S10862","DOIUrl":null,"url":null,"abstract":"<p><p>Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid (PUFA) with 20 carbon atoms and 5 carbon-carbon double bonds. Mammalian cells cannot synthesize long chain PUFAs such as EPA de novo, and, thus, the most effective way to enrich cells in EPA is by dietary intake of fish oils. EPA supplementation causes an increase in its concentration in plasma lipids and in cell membrane phospholipids. Many beneficial effects of EPA supplementation have been noted, including (1) the potential to sensitize cancerous tumors towards chemotherapy, (2) the promotion of cardiovascular health, and (3) the alleviation of some mental disorders, but results from clinical trials have sometimes been disparate. In this study, we report the use of mass spectrometry to investigate the autoxidation of EPA, thereby demonstrating the formation of a variety of oxidized products. The oxidative stress of the patient may affect the response to EPA and may, in part, explain divergent results from clinical trials. </p>","PeriodicalId":18039,"journal":{"name":"Lipid insights","volume":"6 ","pages":"21-35"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/LPI.S10862","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipid insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/LPI.S10862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid (PUFA) with 20 carbon atoms and 5 carbon-carbon double bonds. Mammalian cells cannot synthesize long chain PUFAs such as EPA de novo, and, thus, the most effective way to enrich cells in EPA is by dietary intake of fish oils. EPA supplementation causes an increase in its concentration in plasma lipids and in cell membrane phospholipids. Many beneficial effects of EPA supplementation have been noted, including (1) the potential to sensitize cancerous tumors towards chemotherapy, (2) the promotion of cardiovascular health, and (3) the alleviation of some mental disorders, but results from clinical trials have sometimes been disparate. In this study, we report the use of mass spectrometry to investigate the autoxidation of EPA, thereby demonstrating the formation of a variety of oxidized products. The oxidative stress of the patient may affect the response to EPA and may, in part, explain divergent results from clinical trials.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化二十碳五烯酸钠盐的质谱分析。
二十碳五烯酸(EPA)是一种omega-3多不饱和脂肪酸(PUFA),具有20个碳原子和5个碳-碳双键。哺乳动物细胞不能从头合成长链PUFAs,如EPA,因此,最有效的方法是通过饮食摄入鱼油来丰富EPA细胞。补充EPA导致其在血浆脂质和细胞膜磷脂中的浓度增加。补充EPA的许多有益效果已经被注意到,包括(1)可能使癌性肿瘤对化疗敏感,(2)促进心血管健康,(3)减轻一些精神障碍,但临床试验的结果有时是不同的。在这项研究中,我们报道了使用质谱法来研究EPA的自氧化,从而证明了多种氧化产物的形成。患者的氧化应激可能影响对EPA的反应,并且可能在一定程度上解释临床试验的不同结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Phenylalanine on the Liquid-Expanded and Liquid-Condensed States of Phosphatidylcholine Monolayers. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details. Some Lipid Droplets Are More Equal Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells. Intracellular Lipid Droplets: From Structure to Function. Four Acyltransferases Uniquely Contribute to Phospholipid Heterogeneity in Saccharomyces cerevisiae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1