Learning Statistical Correlation of Prostate Deformations for Fast Registration.

Yonghong Shi, Shu Liao, Dinggang Shen
{"title":"Learning Statistical Correlation of Prostate Deformations for Fast Registration.","authors":"Yonghong Shi,&nbsp;Shu Liao,&nbsp;Dinggang Shen","doi":"10.1007/978-3-642-24319-6_1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel fast registration method for aligning the planning image onto each treatment image of a patient for adaptive radiation therapy of the prostate cancer. Specifically, an online correspondence interpolation method is presented to learn the statistical correlation of the deformations between prostate boundary and non-boundary regions from a population of training patients, as well as from the online-collected treatment images of the same patient. With this learned statistical correlation, the estimated boundary deformations can be used to rapidly predict regional deformations between prostates in the planning and treatment images. In particular, the population-based correlation can be initially used to interpolate the dense correspondences when the number of available treatment images from the current patient is small. With the acquisition of more treatment images from the current patient, the patient-specific information gradually plays a more important role to reflect the prostate shape changes of the current patient during the treatment. Eventually, only the patient-specific correlation is used to guide the regional correspondence prediction, once a sufficient number of treatment images have been acquired and segmented from the current patient. Experimental results show that the proposed method can achieve much faster registration speed yet with comparable registration accuracy compared with the thin plate spline (TPS) based interpolation approach.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"7009 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-24319-6_1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-642-24319-6_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel fast registration method for aligning the planning image onto each treatment image of a patient for adaptive radiation therapy of the prostate cancer. Specifically, an online correspondence interpolation method is presented to learn the statistical correlation of the deformations between prostate boundary and non-boundary regions from a population of training patients, as well as from the online-collected treatment images of the same patient. With this learned statistical correlation, the estimated boundary deformations can be used to rapidly predict regional deformations between prostates in the planning and treatment images. In particular, the population-based correlation can be initially used to interpolate the dense correspondences when the number of available treatment images from the current patient is small. With the acquisition of more treatment images from the current patient, the patient-specific information gradually plays a more important role to reflect the prostate shape changes of the current patient during the treatment. Eventually, only the patient-specific correlation is used to guide the regional correspondence prediction, once a sufficient number of treatment images have been acquired and segmented from the current patient. Experimental results show that the proposed method can achieve much faster registration speed yet with comparable registration accuracy compared with the thin plate spline (TPS) based interpolation approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习前列腺变形的统计相关性快速注册。
本文提出了一种新的快速配准方法,用于前列腺癌适应性放射治疗的规划图像与每个患者的治疗图像对齐。具体而言,提出了一种在线对应插值方法,从训练患者群体以及在线收集的同一患者的治疗图像中学习前列腺边界与非边界区域之间变形的统计相关性。利用这种学习到的统计相关性,估计的边界变形可以用来快速预测规划和治疗图像中前列腺之间的区域变形。特别是,当当前患者可用的治疗图像数量较少时,基于人群的相关性最初可用于插值密集对应。随着对当前患者治疗图像的获取越来越多,患者特异性信息在反映当前患者治疗过程中前列腺形态变化方面逐渐发挥更重要的作用。最终,一旦从当前患者获得并分割了足够数量的治疗图像,仅使用患者特异性相关性来指导区域对应预测。实验结果表明,与基于薄板样条(TPS)的插值方法相比,该方法可以获得更快的配准速度和相当的配准精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images. Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. MoViT: Memorizing Vision Transformers for Medical Image Analysis. Robust Unsupervised Super-Resolution of Infant MRI via Dual-Modal Deep Image Prior. IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1