{"title":"An experimental comparison of PMSprune and other algorithms for motif search.","authors":"Dolly Sharma, Sanguthevar Rajasekaran, Sudipta Pathak","doi":"10.1504/IJBRA.2014.065242","DOIUrl":null,"url":null,"abstract":"<p><p>A comparative study of the various motif search algorithms is very important for several reasons. For example, we could identify the strengths and weaknesses of each. As a result, we might be able to devise hybrids that will perform better than the individual components. In this paper, we (either directly or indirectly) compare the performance of PMSprune (an algorithm based on the (l, d)-motif model) and several other algorithms in terms of seven measures and using well-established benchmarks. We have employed several benchmark datasets including the one used by Tompa et al. It is observed that both PMSprune and DME (an algorithm based on position-specific score matrices), in general, perform better than the 13 algorithms reported in Tompa et al. Subsequently, we have compared PMSprune and DME on other benchmark datasets including ChIP-Chip, ChIP-Seq and ABS. Between PMSprune and DME, PMSprune performs better than DME on six measures. DME performs better than PMSprune on one measure (namely, specificity). </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2014.065242","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2014.065242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 5
Abstract
A comparative study of the various motif search algorithms is very important for several reasons. For example, we could identify the strengths and weaknesses of each. As a result, we might be able to devise hybrids that will perform better than the individual components. In this paper, we (either directly or indirectly) compare the performance of PMSprune (an algorithm based on the (l, d)-motif model) and several other algorithms in terms of seven measures and using well-established benchmarks. We have employed several benchmark datasets including the one used by Tompa et al. It is observed that both PMSprune and DME (an algorithm based on position-specific score matrices), in general, perform better than the 13 algorithms reported in Tompa et al. Subsequently, we have compared PMSprune and DME on other benchmark datasets including ChIP-Chip, ChIP-Seq and ABS. Between PMSprune and DME, PMSprune performs better than DME on six measures. DME performs better than PMSprune on one measure (namely, specificity).
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.