The Development of Models Based on Linear and Nonlinear Multivariate Methods to Predict ADME/PK Properties Using Physicochemical Properties of Kinase, Protease Inhibitors, and GPCR Antagonists.
{"title":"The Development of Models Based on Linear and Nonlinear Multivariate Methods to Predict ADME/PK Properties Using Physicochemical Properties of Kinase, Protease Inhibitors, and GPCR Antagonists.","authors":"Deepu Bakasta, M G Shambhu","doi":"10.1155/2013/495134","DOIUrl":null,"url":null,"abstract":"<p><p>Oral bioavailability of a drug compound is the significant property for potential drug candidates. Measuring this property can be costly and time-consuming. Quantitative structure-property relationships (QSPRs) are used to estimate the percentage of oral bioavailability, and they are an attractive alternative to experimental measurements. A data set of 217 drug and drug-like compounds with measured values of the percentage of oral bioavailability taken from the small molecule ChemBioBase database was used to develop and test a QSPR model. Descriptors were calculated for the compounds using Codessa 2.1 tool. Nonlinear general regression neural network model was generated using the DTREG predictive modeling program software. The calculated percentage of oral bioavailability model performs well, with root-mean-square (rms) errors of 4.55% oral bioavailability units for the training set, 14.32% oral bioavailability units for the test set, and 19.12% oral bioavailability units for the external prediction set. Given the structural diversity and bias of the data set, this is a good first attempt at modeling oral bioavailability using QSPR methods. The model can be used as a potential virtual screen or property estimator. With a larger data supply less biased toward the high end values of the percentage of oral bioavailability, a more successful model could likely be developed. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2013 ","pages":"495134"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/495134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/495134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/3/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oral bioavailability of a drug compound is the significant property for potential drug candidates. Measuring this property can be costly and time-consuming. Quantitative structure-property relationships (QSPRs) are used to estimate the percentage of oral bioavailability, and they are an attractive alternative to experimental measurements. A data set of 217 drug and drug-like compounds with measured values of the percentage of oral bioavailability taken from the small molecule ChemBioBase database was used to develop and test a QSPR model. Descriptors were calculated for the compounds using Codessa 2.1 tool. Nonlinear general regression neural network model was generated using the DTREG predictive modeling program software. The calculated percentage of oral bioavailability model performs well, with root-mean-square (rms) errors of 4.55% oral bioavailability units for the training set, 14.32% oral bioavailability units for the test set, and 19.12% oral bioavailability units for the external prediction set. Given the structural diversity and bias of the data set, this is a good first attempt at modeling oral bioavailability using QSPR methods. The model can be used as a potential virtual screen or property estimator. With a larger data supply less biased toward the high end values of the percentage of oral bioavailability, a more successful model could likely be developed.
期刊介绍:
International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis. International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis.