{"title":"Understanding and harnessing hydrogenases, biological dihydrogen catalysts.","authors":"Alison Parkin","doi":"10.1007/978-94-017-9269-1_5","DOIUrl":null,"url":null,"abstract":"<p><p>It has been estimated that 99 % of all organisms utilize dihydrogen (H2). Most of these species are microbes and their ability to use H₂as a metabolite arises from the expression of H2 metalloenzymes known as hydrogenases. These molecules have been the focus of intense biological, biochemical, and chemical research because hydrogenases are biotechnologically relevant enzymes.</p>","PeriodicalId":18698,"journal":{"name":"Metal ions in life sciences","volume":"14 ","pages":"99-124"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-94-017-9269-1_5","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal ions in life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-94-017-9269-1_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
It has been estimated that 99 % of all organisms utilize dihydrogen (H2). Most of these species are microbes and their ability to use H₂as a metabolite arises from the expression of H2 metalloenzymes known as hydrogenases. These molecules have been the focus of intense biological, biochemical, and chemical research because hydrogenases are biotechnologically relevant enzymes.