Deborah E Shelton, Alexey G Desnitskiy, Richard E Michod
{"title":"Distributions of reproductive and somatic cell numbers in diverse <i>Volvox</i> (Chlorophyta) species.","authors":"Deborah E Shelton, Alexey G Desnitskiy, Richard E Michod","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Volvox</i> (Chlorophyta) asexual colonies consist of two kinds of cells: a large number of small somatic cells and a few large reproductive cells. The numbers of reproductive and somatic cells correspond directly to the major components of fitness - fecundity and viability, respectively. <i>Volvox</i> species display diverse patterns of development that give rise to the two cell types.</p><p><strong>Questions: </strong>For <i>Volvox</i> species under fixed conditions, do species differ with respect to the distribution of somatic and reproductive cell numbers in a population of asexual clones? Specifically, do they differ with respect to the dispersion of the distribution, i.e. with respect to their intrinsic variability? If so, are these differences related to major among-species developmental differences?</p><p><strong>Data description: </strong>For each of five <i>Volvox</i> species, we estimate the number of somatic and reproductive cells for 40 colonies and the number of reproductive cells for an additional 200 colonies. We sampled all colonies from growing, low-density, asexual populations under standard conditions.</p><p><strong>Search method: </strong>We compare the distribution of reproductive cell numbers to a Poisson distribution. We also compare the overall dispersion of reproductive cell number among species by calculating the coefficient of variation (CV). We compare the bivariate (reproductive and somatic cell) dataset to simulated datasets produced from a simple model of cell-type specification with intrinsic variability and colony size variation. This allows us to roughly estimate the level of intrinsic variability that is most consistent with our observed bivariate data (given an unknown level of size variation).</p><p><strong>Conclusions: </strong>The overall variability (CV) in reproductive cell number is high in <i>Volvox</i> compared with more complex organisms. <i>Volvox</i> species show differences in reproductive cell number CV that were not clearly related to development, as currently understood. If we used the bivariate data and tried to account for the effects of colony size variation, we found that the species that have fast embryonic divisions and asymmetric divisions have substantially higher intrinsic variability than the species that have slow divisions and no asymmetric divisions. Under our culture conditions, the Poisson distribution is a good description of intrinsic variability in reproductive cell number for some but not all <i>Volvox</i> species.</p>","PeriodicalId":50469,"journal":{"name":"Evolutionary Ecology Research","volume":"14 ","pages":"707-727"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244606/pdf/nihms598473.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Ecology Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Volvox (Chlorophyta) asexual colonies consist of two kinds of cells: a large number of small somatic cells and a few large reproductive cells. The numbers of reproductive and somatic cells correspond directly to the major components of fitness - fecundity and viability, respectively. Volvox species display diverse patterns of development that give rise to the two cell types.
Questions: For Volvox species under fixed conditions, do species differ with respect to the distribution of somatic and reproductive cell numbers in a population of asexual clones? Specifically, do they differ with respect to the dispersion of the distribution, i.e. with respect to their intrinsic variability? If so, are these differences related to major among-species developmental differences?
Data description: For each of five Volvox species, we estimate the number of somatic and reproductive cells for 40 colonies and the number of reproductive cells for an additional 200 colonies. We sampled all colonies from growing, low-density, asexual populations under standard conditions.
Search method: We compare the distribution of reproductive cell numbers to a Poisson distribution. We also compare the overall dispersion of reproductive cell number among species by calculating the coefficient of variation (CV). We compare the bivariate (reproductive and somatic cell) dataset to simulated datasets produced from a simple model of cell-type specification with intrinsic variability and colony size variation. This allows us to roughly estimate the level of intrinsic variability that is most consistent with our observed bivariate data (given an unknown level of size variation).
Conclusions: The overall variability (CV) in reproductive cell number is high in Volvox compared with more complex organisms. Volvox species show differences in reproductive cell number CV that were not clearly related to development, as currently understood. If we used the bivariate data and tried to account for the effects of colony size variation, we found that the species that have fast embryonic divisions and asymmetric divisions have substantially higher intrinsic variability than the species that have slow divisions and no asymmetric divisions. Under our culture conditions, the Poisson distribution is a good description of intrinsic variability in reproductive cell number for some but not all Volvox species.
期刊介绍:
Evolutionary Ecology Research publishes original research contributions focusing on the overlap between ecology
and evolution. Papers may treat any taxon or be general. They may be empirical, theoretical or a combination of the two.
EER prefers conceptual contributions that take intellectual risks or that test ideas.