Manned-unmanned teaming: expanding the envelope of UAS operational employment.

Steven J Gaydos, Ian P Curry
{"title":"Manned-unmanned teaming: expanding the envelope of UAS operational employment.","authors":"Steven J Gaydos, Ian P Curry","doi":"10.3357/ASEM.4164.2014","DOIUrl":null,"url":null,"abstract":"Abstract : The employment of unmanned aerial systems (UAS) has become ubiquitous, not only within modern multinational militaries, but also among the civilian and commercial aviation communities. Although the concept of UAS application dates much farther back than most realize (unmanned balloons were used during the American Civil War for ordnance delivery with limited success, for example), most trace the origins of contemporary apposite UAS application to the Israelis and Americans in the 1970s and 1980s ( 11 ). Over the past few decades, there has been rapid expansion of UAS technology, capability, and employment strategies on many fronts. One of these important developments includes interoperability of manned and unmanned aerial platforms to enhance mission command and complement combat power. Titled Manned-Unmanned Teaming (MUM-T), this entails the synchronized employment of manned and unmanned air (and ground) vehicles, sensors, and weapons systems. The concept has existed for decades, but relatively recent advances in technology and doctrine have spearheaded the movement from concept to real-world application. And as development continues to swiftly mature, the aerospace medical community at large would do well to pay attention. Many of these applications, while no doubt providing enhanced capability, may pose aeromedical and human factors challenges to which we should remain vigilant. These may include (but are not limited to) visual overload, increased workload and task saturation, distraction and diminished fl ight situation awareness (SA), motion sickness, and spatial disorientation (SD).","PeriodicalId":8676,"journal":{"name":"Aviation, space, and environmental medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3357/ASEM.4164.2014","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation, space, and environmental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3357/ASEM.4164.2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract : The employment of unmanned aerial systems (UAS) has become ubiquitous, not only within modern multinational militaries, but also among the civilian and commercial aviation communities. Although the concept of UAS application dates much farther back than most realize (unmanned balloons were used during the American Civil War for ordnance delivery with limited success, for example), most trace the origins of contemporary apposite UAS application to the Israelis and Americans in the 1970s and 1980s ( 11 ). Over the past few decades, there has been rapid expansion of UAS technology, capability, and employment strategies on many fronts. One of these important developments includes interoperability of manned and unmanned aerial platforms to enhance mission command and complement combat power. Titled Manned-Unmanned Teaming (MUM-T), this entails the synchronized employment of manned and unmanned air (and ground) vehicles, sensors, and weapons systems. The concept has existed for decades, but relatively recent advances in technology and doctrine have spearheaded the movement from concept to real-world application. And as development continues to swiftly mature, the aerospace medical community at large would do well to pay attention. Many of these applications, while no doubt providing enhanced capability, may pose aeromedical and human factors challenges to which we should remain vigilant. These may include (but are not limited to) visual overload, increased workload and task saturation, distraction and diminished fl ight situation awareness (SA), motion sickness, and spatial disorientation (SD).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有人-无人组队:扩大无人机作战使用的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aviation, space, and environmental medicine
Aviation, space, and environmental medicine 医学-公共卫生、环境卫生与职业卫生
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Chronic bacterial prostatitis. Carpe diem. Temperature changes in selected areas of body surface induced by systemic cryostimulation. Comparison of in-flight measures with predictions of a bio-mathematical fatigue model. Demographic and occupational predictors of neck pain in pilots: analysis and multinational comparison.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1