Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases.

Faye A Rogers, Janice A Lloyd, Meetu Kaushik Tiwari
{"title":"Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases.","authors":"Faye A Rogers,&nbsp;Janice A Lloyd,&nbsp;Meetu Kaushik Tiwari","doi":"10.4161/adna.27792","DOIUrl":null,"url":null,"abstract":"<p><p>Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis. </p>","PeriodicalId":8444,"journal":{"name":"Artificial DNA: PNA & XNA","volume":"5 1","pages":"e27792"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/adna.27792","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial DNA: PNA & XNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/adna.27792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含有修饰鸟嘌呤碱基的富g三聚体寡核苷酸生物活性的提高。
由序列特异性三联体形成寡核苷酸(TFOs)产生的三联体结构已被证明是基因靶向策略的有前途的工具。此外,三重体技术已被广泛应用于DNA修复、重组和诱变的分子机制研究。然而,利用富含鸟嘌呤的寡核苷酸作为第三链的三联体形成可以通过钾诱导的自结合导致g -四联体形成而被抑制。我们在这里报道,与含有天然鸟嘌呤的tfo相比,部分取代8-氮杂-7-二氮杂-鸟嘌呤(PPG)的富鸟嘌呤tfo改善了钾的靶位结合。我们设计了ppg取代的TFOs与supFG1报告基因中的多嘌呤序列结合。采用电泳迁移率凝胶位移法分析ppg取代的TFOs与目标序列的结合效率。我们已经确定,在钾的存在下,非取代的TFO, AG30不能与目标序列结合,但在高达140 mM KCl的条件下,可以观察到与ppg取代的AG30结合。通过基因靶向诱变测定,ppg - tfo能够保持其诱导基因组修饰的能力。此外,这些化合物能够诱导DNA双链断裂,从而导致细胞凋亡的激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Purification and assembly of thermostable Cy5 labeled γ-PNAs into a 3D DNA nanocage. Effect of 2′-O-methyl/thiophosphonoacetate-modified antisense oligonucleotides on huntingtin expression in patient-derived cells Anomeric DNA quadruplexes. Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs. The genetic code. Rewritten, revised, repurposed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1